CS 171: Discussion Section 10 (April 8)

1 Which Tasks Become Easy With Bilinear Maps?

Let $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ be a bilinear map for which the decisional bilinear Diffie-Hellman (DBDH) problem is hard.

1. For each of the following computational problems, indicate whether the following problems are hard:
(a) DDH in \mathbb{G}
(b) CDH in \mathbb{G}
(c) DDH in \mathbb{G}_{T}
2. Will the Diffie-Hellman key-exchange protocol be secure if we use group \mathbb{G} ? How about if we use \mathbb{G}_{T} ?

Solution

1. Summary: We will show that DDH in \mathbb{G} is easy to solve with the help of the bilinear map $e(\cdot)$. But the other problems listed above are hard. Next, the Diffie-Hellman key exchange protocol will be secure if it uses \mathbb{G}_{T}, but insecure if it uses \mathbb{G}. The protocol is secure if it uses a group for which DDH is hard.
2. Let us recall the DBDH problem:

Definition 1.1 (Decisional Bilinear Diffie-Hellman Problem).
$\underline{\operatorname{DBDH}(n, \mathcal{A}):}$
(a) The challenger samples the parameters of the bilinear map:

$$
\mathrm{pp}=\left(\mathbb{G}, \mathbb{G}_{T}, q, g, e\right) \leftarrow \mathcal{G}\left(1^{n}\right)
$$

(b) The challenger samples $a, b, c, r \leftarrow \mathbb{Z}_{q}$ independently and also samples $\beta \leftarrow\{0,1\}$. Then they give the adversary the inputs:

$$
\left(\mathrm{pp}, g^{a}, g^{b}, g^{c}, e(g, g)^{a b c+r \beta}\right)
$$

(c) \mathcal{A} outputs a guess β^{\prime} for β.
(d) The output of the game is 1 (win) if $\beta^{\prime}=\beta$ and 0 (lose) otherwise.

We say that the $\mathbf{D B D}$ problem is hard if for all PPT adversaries \mathcal{A},

$$
\left|\operatorname{Pr}[\operatorname{DBDH}(n, \mathcal{A}) \rightarrow 1]-\frac{1}{2}\right| \leq \operatorname{negl}(n)
$$

3.

Claim 1.2. $\underline{D D H}$ in \mathbb{G} is easy.

Proof. DDH in \mathbb{G} can be solved efficiently as follows:
(a) The DDH challenger samples $x, y \leftarrow \mathbb{Z}_{q}$ independently and sends the adversary $\left(\mathbb{G}, q, g, g^{x}, g^{y}, g^{z}\right)$, where either $z=x \cdot y \bmod q$ or $z \leftarrow \mathbb{Z}_{q}$.
(b) The adversary computes $e\left(g^{x}, g^{y}\right)=e(g, g)^{x \cdot y}$ and $e\left(g, g^{z}\right)=e(g, g)^{z}$ and checks whether:

$$
\begin{equation*}
e(g, g)^{x \cdot y}=e(g, g)^{z} \tag{1.1}
\end{equation*}
$$

If so, the adversary guesses that $z=x \cdot y \bmod q$. If not, they guess that $z \leftarrow \mathbb{Z}_{q}$.
The adversary will win the DDH game with probability $1-\operatorname{negl}(n) . e(g, g)$ is a generator for \mathbb{G}_{T}, so equation 1.1 is satisfied if and only if $z=x \cdot y \bmod q$. The only way the adversary can lose is if $z \leftarrow \mathbb{Z}_{q}$ happens to produce $z=x \cdot y \bmod q$, and this occurs with negligible probability.
4.

Claim 1.3. $C D H$ in \mathbb{G} is hard.

Proof.
(a) If CDH in \mathbb{G} were easy, then we could use the CDH attacker $\mathcal{A}_{\mathrm{CDH}}$ to solve the DBDH problem.
(b) Here is a construction of an adversary for the DBDH game $\mathcal{A}_{\mathrm{DBDH}}$:
$\mathcal{A}_{\mathrm{DBDH}}:$
i. $\mathcal{A}_{\text {DBDH }}$ receives inputs $\left(\mathrm{pp}, g^{a}, g^{b}, g^{c}, g^{a b c+r \beta}\right)$.
ii. They run $\mathcal{A}_{\mathrm{CDH}}\left(\mathbb{G}, q, g, g^{a}, g^{b}\right)$ which outputs h.
iii. They check whether

$$
e\left(g^{a}, g^{b}\right)=e(g, h)
$$

which is equivalent to checking whether $h=g^{a b}$. If not, they sample and output $\beta^{\prime} \leftarrow\{0,1\}$ and halt. If so, they continue.
iv. Then they check whether

$$
e\left(h, g^{c}\right)=e\left(g, g^{a b c+r \beta}\right)
$$

When $h=g^{a b}$, this is equivalent to checking whether $a b c=a b c+r \beta$. If so, they output $\beta^{\prime}=0$. If not, they output $\beta^{\prime}=1$.
(c) The point of checking whether $e\left(g^{a}, g^{b}\right)=e(g, h)$ is to determine whether $h=g^{a b}$. The two conditions are equivalent. $\mathcal{A}_{\mathrm{CDH}}$ will compute $h=g^{a b}$ with non-negligible probability.
(d) If $h=g^{a b}$, then checking whether $e\left(h, g^{c}\right)=e\left(g, g^{a b c+r \beta}\right)$ will correctly decide the value of β with probability $1-\operatorname{negl}(n)$.
If $h=g^{a b}$, then $e\left(h, g^{c}\right)=g^{a b c}$. The condition $e\left(h, g^{c}\right)=e\left(g, g^{a b c+r \beta}\right)$ will pass if and only if $a b c=a b c+\beta \cdot r$.
Then the only way that $\beta^{\prime} \neq \beta$ is if $r=0$, but this only occurs with negligible probability.
(e) On the other hand, if $h \neq g^{a b}$, then $\mathcal{A}_{\text {DBDH }}$ is unable to learn any useful information about β, so they guess randomly $\left(\beta^{\prime} \leftarrow\{0,1\}\right)$. This guess is correct with probability $\frac{1}{2}$.
(f) In total, the success probability of $\mathcal{A}_{\mathrm{DBDH}}$ at guessing β is:

$$
\begin{aligned}
\operatorname{Pr}\left[h=g^{a b}\right] \cdot(1-\operatorname{negl}(n))+\left(1-\operatorname{Pr}\left[h=g^{a b}\right]\right) \cdot \frac{1}{2} & =\frac{1}{2}+\operatorname{Pr}\left[h=g^{a b}\right] \cdot\left(\left.1-\frac{1}{2}-\operatorname{neg} \right\rvert\,(n)\right) \\
& =\frac{1}{2}+\operatorname{non-negl}(n) \cdot\left(\frac{1}{2}-\operatorname{negl}(n)\right) \\
& =\frac{1}{2}+\operatorname{non-negl}(n)
\end{aligned}
$$

(g) In summary, we've shown that if CDH in \mathbb{G} is easy, then DBDH is easy. That's a contradiction because we are told that DBDH is hard. Therefore, CDH in \mathbb{G} in actually hard.
5.

Claim 1.4. $\underline{D D H \text { in } \mathbb{G}_{T}}$ is hard.
Proof.
(a) If DDH in \mathbb{G}_{T} were easy, then we could use the DDH attacker $\mathcal{A}_{\mathrm{DDH}}$ to solve the DBDH problem. Without loss of generality, let us assume that if DDH is easy in \mathbb{G}_{T}, then $\operatorname{Pr}\left[\mathcal{A}_{\mathrm{DDH}}\right.$ is correct $] \geq \frac{1}{2}+\operatorname{non-negl}(n)$.
(b) Here is a construction of an adversary for the DBDH game $\mathcal{A}_{\mathrm{DBDH}}$:
$\mathcal{A}_{\mathrm{DBDH}}:$
i. $\mathcal{A}_{\text {DBDH }}$ receives inputs $\left(\mathrm{pp}, g^{a}, g^{b}, g^{c}, g^{a b c+r \beta}\right)$.
ii. They compute $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$ and $e\left(g, g^{c}\right)=e(g, g)^{c}$.
iii. They run $\mathcal{A}_{\mathrm{DDH}}\left(\mathbb{G}_{T}, q, e(g, g), e(g, g)^{a b}, e(g, g)^{c}, e(g, g)^{a b c+r \beta}\right)$, which correctly decides whether $a b c=a b c+r \beta$ with non-negligible advantage.
iv. If $\mathcal{A}_{\mathrm{DDH}}$ says that $a b c=a b c+r \beta$, then $\mathcal{A}_{\mathrm{DBDH}}$ outputs $\beta^{\prime}=0$. Otherwise, they output $\beta^{\prime}=1$.
(c) As long as $r \neq 0$ and $\mathcal{A}_{\mathrm{DDH}}$ correctly decides whether $a b c=a b c+r \beta$, then $\mathcal{A}_{\mathrm{DBDH}}$ correctly guesses β.
Then:

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{A}_{\text {DBDH }} \text { succeeds }\right] & \geq \operatorname{Pr}\left[\mathcal{A}_{\text {DDH }} \text { succeeds }\right] \cdot \operatorname{Pr}[r \neq 0]=\operatorname{Pr}\left[\mathcal{A}_{\text {DDH }} \text { succeeds }\right] \cdot(1-\operatorname{neg} \mid(n)) \\
& =\operatorname{Pr}\left[\mathcal{A}_{\text {DDH }} \text { succeeds }\right]-\operatorname{neg|}(n) \\
& \geq \frac{1}{2}+\operatorname{non}-\operatorname{neg}(n)
\end{aligned}
$$

(d) In summary, we've shown that if DDH in \mathbb{G}_{T} is easy, then DBDH is easy. That's a contradiction because we are told that DBDH is hard for this bilinear map. Therefore, DDH in \mathbb{G}_{T} is actually hard.
6.

Corollary 1.5. The following problems are also hard: discrete \log in $\mathbb{G}, C D H$ in \mathbb{G}_{T} and discrete \log in \mathbb{G}_{T}.
Proof sketch:
(a) For any group, DDH is hard $\Longrightarrow \mathrm{CDH}$ is hard \Longrightarrow discrete \log is hard.
(b) For group \mathbb{G}_{T}, we know that DDH is hard, so CDH and discrete \log are also hard.
(c) For group \mathbb{G}, we know that CDH is hard, so discrete log is also hard.

2 Bounded Collusion Identity-Based Encryption

In lecture 18 , we used a bilinear map to construct IBE (identity-based encryption). Here, we will use DDH and a random oracle $H: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{q}$ to construct a weaker version of IBE that is secure if the attacker only receives a single sk ${ }_{\text {ID }}$.

A random oracle is a truly random function that all parties have query access to. In this problem, H is sampled uniformly at random from all functions mapping $\mathbb{Z}_{q} \rightarrow \mathbb{Z}_{q}$. Random oracles are idealized objects, and they don't exist in the real world. In practice, we replace random oracles with sufficiently complex hash functions, such as SHA-256.

Let the IBE scheme $\Pi=$ (Setup, KeyGen, Enc, Dec) be constructed as follows:

1. Setup $\left(1^{n}\right)$:
(a) Sample the parameters of a cyclic group $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Let $\mathrm{pp}=(\mathbb{G}, q, g)$.
(b) Sample $a, b \leftarrow \mathbb{Z}_{q}$ independently. Compute $h_{0}=g^{a}$ and $h_{1}=g^{b}$.
(c) Output $\mathrm{mpk}=\left(\mathrm{pp}, h_{0}, h_{1}\right)$ and $\mathrm{msk}=(\mathrm{pp}, a, b)$.
2. KeyGen(msk, ID):
(a) Let $\mathrm{ID} \in \mathbb{Z}_{q}$.
(b) Compute $r=H(\mathrm{ID})$ and $s=a \cdot r+b \bmod q$.
(c) Output $\mathrm{sk}_{\mathrm{ID}}=(\mathrm{ID}, s)$.
3. Enc(mpk, ID,$m)$:
(a) Let $m \in \mathbb{G}$.
(b) Compute $r=H(\mathrm{ID})$.
(c) Sample $y \leftarrow \mathbb{Z}_{q}$.
(d) Output ct $=\left(g^{y}, h_{0}^{y \cdot r} \cdot h_{1}^{y} \cdot m\right)$.
4. $\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{ID}}, \mathrm{ct}\right): T B D$

It is implied that all functions can make queries to H.

Questions:

1. Fill in $\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{ID}}, \mathrm{ct}\right)$, and prove that any valid ciphertext will be decrypted correctly.

Solution

$\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{ID}}, \mathrm{ct}\right)$:
(a) Parse ct as ct $=\left(c_{0}, c_{1}\right)$.
(b) Compute $r=H$ (ID) and $s=a \cdot r+b \bmod q$.
(c) Compute and output $m=c_{0}^{-s} \cdot c_{1}$

Any valid ciphertext will be decrypted correctly because:

$$
\begin{aligned}
\operatorname{Dec}\left[\mathrm{sk}_{\mathrm{ID}}, \operatorname{Enc}(\mathrm{mpk}, \mathrm{ID}, m)\right] & =c_{0}^{-s} \cdot c_{1} \\
& =g^{-y a r-y b} \cdot h_{0}^{y r} \cdot h_{1}^{y} \cdot m \\
& =g^{-y a r-y b} \cdot g^{y a r} \cdot g^{y b} \cdot m \\
& =m
\end{aligned}
$$

2. Show that Π is not a CPA-secure IBE scheme.

Solution

(a) The adversary queries KeyGen(msk, •) on two different ID's: They obtain

$$
\begin{aligned}
& \left(\mathrm{ID}_{1}, s_{1}\right) \leftarrow \operatorname{KeyGen}\left(\text { msk, } \mathrm{ID}_{1}\right) \\
& \left(\mathrm{ID}_{2}, s_{2}\right) \leftarrow \operatorname{KeyGen}\left(\mathrm{msk}, \mathrm{ID}_{2}\right)
\end{aligned}
$$

(b) The adversary computes $r_{1}=H\left(\mathrm{ID}_{1}\right)$ and $r_{2}=H\left(\mathrm{ID}_{2}\right)$ and sets up the following linear system:

$$
\left\{\begin{array}{l}
s_{1}=r_{1} \cdot a+b \quad \bmod q \\
s_{2}=r_{2} \cdot a+b \quad \bmod q
\end{array}\right.
$$

The unknown variables are (a, b). If $r_{1} \neq r_{2}$ (which occurs with probability $1-\frac{1}{q}=$ $1-\operatorname{negl}(n))$, this system is full-rank.
(c) The adversary solves the system for (a, b).
(d) Now the adversary knows msk $=(\mathrm{pp}, a, b)$, so they can decrypt any ciphertext and break CPA security.

It turns out that any adversary that breaks the CPA-security of this IBE scheme needs to make at least 2 queries to KeyGen(msk, \cdot). This IBE scheme is CPA-secure against any adversary that never makes more than 1 query to KeyGen (msk, \cdot).

