CS 171: Discussion Section 10 (April 8)

1 Which Tasks Become Easy With Bilinear Maps?

Let $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ be a bilinear map for which the *decisional bilinear Diffie-Hellman* (DBDH) problem is hard.

- 1. For each of the following computational problems, indicate whether the following problems are hard:
 - (a) DDH in \mathbb{G}
 - (b) CDH in \mathbb{G}
 - (c) DDH in \mathbb{G}_T
- 2. Will the Diffie-Hellman key-exchange protocol be secure if we use group \mathbb{G} ? How about if we use \mathbb{G}_T ?

2 Bounded Collusion Identity-Based Encryption

In lecture 18, we used a bilinear map to construct IBE (identity-based encryption). Here, we will use DDH and a random oracle $H : \mathbb{Z}_q \to \mathbb{Z}_q$ to construct a weaker version of IBE that is secure if the attacker only receives a single $\mathsf{sk}_{\mathsf{ID}}$.

A random oracle is a truly random function that all parties have query access to. In this problem, H is sampled uniformly at random from all functions mapping $\mathbb{Z}_q \to \mathbb{Z}_q$. Random oracles are idealized objects, and they don't exist in the real world. In practice, we replace random oracles with sufficiently complex hash functions, such as SHA-256.

Let the IBE scheme $\Pi = (\mathsf{Setup}, \mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec})$ be constructed as follows:

1. Setup (1^n) :

- (a) Sample the parameters of a cyclic group $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$. Let $pp = (\mathbb{G}, q, g)$.
- (b) Sample $a, b \leftarrow \mathbb{Z}_q$ independently. Compute $h_0 = g^a$ and $h_1 = g^b$.
- (c) Output $mpk = (pp, h_0, h_1)$ and msk = (pp, a, b).
- 2. KeyGen(msk, ID):
 - (a) Let $\mathsf{ID} \in \mathbb{Z}_q$.
 - (b) Compute $r = H(\mathsf{ID})$ and $s = r \cdot a + b \mod q$.
 - (c) Output $\mathsf{sk}_{\mathsf{ID}} = (\mathsf{ID}, s)$.
- 3. Enc(mpk, ID, m):
 - (a) Let $m \in \mathbb{G}$.
 - (b) Compute $r = H(\mathsf{ID})$.
 - (c) Sample $y \leftarrow \mathbb{Z}_q$.
 - (d) Output $\mathsf{ct} = (g^y, h_0^{y \cdot r} \cdot h_1^y \cdot m).$
- 4. Dec(sk_{ID}, ct): TBD

It is implied that all functions can make queries to H.

Questions:

- 1. Fill in Dec(sk_{ID}, ct), and prove that any valid ciphertext will be decrypted correctly.
- 2. Show that Π is not a CPA-secure IBE scheme.

It turns out that any adversary that breaks the CPA-security of this IBE scheme needs to make at least 2 queries to $KeyGen(msk, \cdot)$. This IBE scheme is CPA-secure against any adversary that never makes more than 1 query to $KeyGen(msk, \cdot)$.