CS 171: Discussion Section 11 (April 15)

1 Zero-Knowledge Protocol for Graph Isomorphism

Two graphs are **isomorphic** if it is possible to permute the vertices of one graph to obtain the other graph.

Let G = (V, E) be a graph with *n* vertices: $V = \{1, ..., n\} = [n]$. Let $\pi : [n] \to [n]$ be a permutation of the vertices. We can define $\pi(G)$ to be the graph that results from permuting G's vertices according to π .¹

More formally, $\pi(G) = (V', E')$ is a graph with vertex set V' = V and edge set

$$E' = \{(u, v) \in V \times V : (\pi^{-1}(u), \pi^{-1}(v)) \in E\}$$

Definition 1.1 (Isomorphic Graphs). Two graphs G_0 and G_1 are **isomorphic** (notated as $G_0 \simeq G_1$) if they have the same number of vertices n, and there exists a permutation $\pi^* : [n] \to [n]$ such that

$$G_0 = \pi^*(G_1)$$

Question: Give a zero-knowledge proof system for the language of isomorphic graphs $\mathcal{L} = \{(G_0, G_1) : G_0 \simeq G_1\}$. Prove that the scheme satisfies completeness, soundness, and zero-knowledge.

¹It's technically an abuse of notation to write $\pi(G)$ since π was defined to take a vertex as input, not a graph, but we'll do it anyways.

1.1 Proof System Definitions

In this problem, the prover's goal is to convince a verifier that a given pair of graphs (G_0, G_1) are isomorphic. We will use the following terminology. The **language**

$$\mathcal{L} = \{ (G_0, G_1) : G_0 \simeq G_1 \}$$

is the set of all pairs of graphs that are isomorphic to each other. $x := (G_0, G_1)$ is called an **instance**, and the prover's job is convince a verifier that a given instance x is in the language \mathcal{L} .

One simple way to prove that $G_0 \simeq G_1$ is to provide a permutation π^* such that $G_0 = \pi^*(G_1)$. Then a verifier can check whether the condition $G_0 = \pi^*(G_1)$ is satisfied.

Let's put this in more abstract terms. The witness $w := \pi^*$ is a proof that $x \in \mathcal{L}$. Let R(x, w) be the function that verifies the witness:

$$R[(G_0, G_1), \pi^*] = \begin{cases} 1, & G_0 = \pi^*(G_1) \\ 0, & \text{otherwise} \end{cases}$$

R outputs 1 if and only if w is a valid proof that $x \in \mathcal{L}$.

Completeness and Soundness

The goal of a zero-knowledge proof system is to convince the verifier that $x \in \mathcal{L}$ without revealing any information about w to the verifier.

Syntax of the protocol: The prover takes inputs $(1^{\lambda}, x, w)$, and the verifier takes inputs $(1^{\lambda}, x)$. $\lambda \in \mathbb{N}$ is the security parameter. x is the instance that the prover will try to prove belongs to \mathcal{L} . In order for the proof to succeed, w should be a valid witness for x (R(x, w) = 1). After some interaction between the prover and verifier, the verifier outputs a bit indicating whether they accept or reject the proof that $x \in \mathcal{L}$.

This protocol should have the following three properties: completeness, soundness, and zero-knowledge. We'll define them below.

Let (P, V) be the **honest prover and verifier**, respectively, who follow the protocol aswritten. Let (P^*, V^*) be a **dishonest prover and verifier**, respectively, who may deviate from the protocol.

Completeness says that a valid proof will be accepted with overwhelming probability.

Definition 1.2 (Completeness). The protocol satisfies completeness if when $P(1^{\lambda}, x, w)$ and $V(1^{\lambda}, x)$ interact and their inputs satisfy R(x, w) = 1, then the verifier will accept the proof with probability $\geq 1 - \operatorname{negl}(\lambda)$.

Soundness says that if $x \notin \mathcal{L}$, then no adversarial prover will be able to "trick" the verifier into accepting the proof with greater than negligible probability.

Definition 1.3 (Soundness). The protocol satisfies **soundness** if for any $x \notin \mathcal{L}$ and any adversarial prover P^* , when P^* and $V(1^{\lambda}, x)$ interact, then the verifier will accept the proof with probability $\leq \mathsf{negl}(\lambda)$.

Zero-Knowledge

Zero-knowledge says that an adversarial verifier cannot learn anything about w during the protocol because the information available to the verifier (their view) can be simulated without knowledge of w.

To make this definition more formal, let's establish some notation.

- When $V^*(1^{\lambda}, x)$ interacts with $P(1^{\lambda}, x, w)$, let the verifier's **view**, $\mathsf{view}(V^*; 1^{\lambda}, x, w)$, be a list of the verifier's inputs $(1^{\lambda}, x)$, any messages sent to or from the verifier during the protocol, and anything output by the verifier.
- Let the simulator Sim be an algorithm that tries to simulate the verifier's view given only $(1^{\lambda}, x)$. Note that Sim is not given w.

Next, Sim is given black-box access to V^* (notated as Sim^{V^*}). This means Sim can run V^* on any inputs of its choice and rewind V^* to any step, but it cannot modify the internal workings of V^* .

Finally, the expected value of Sim's runtime should be polynomial in the size of Sim's inputs.

• Let the distinguisher D be an algorithm that outputs a bit and tries to distinguish the verifier's real view from the one produced by the simulator.

Informally, the protocol satisfies **zero-knowledge** if whenever R(x, w) = 1, the distinguisher cannot distinguish the real view from the simulated view.

Here is a more-formal definition:

Definition 1.4 (Black-Box Zero-Knowledge). The protocol satisfies (black-box) **zero-knowledge** if there exists a simulator Sim such that for any adversarial V^* and any inputs $(1^{\lambda}, x, w)$ that satisfy R(x, w) = 1 and any distinguisher D:

$$\Pr\left[D\left(\mathsf{view}(V^*; 1^\lambda, x, w)\right) \to 1\right] - \Pr\left[D\left(\mathsf{Sim}^{V^*}(1^\lambda, x)\right) \to 1\right] \middle| \le \mathsf{negl}(\lambda)$$

Finally, **honest-verifier zero-knowledge** is a weaker form of security in which zero-knowledge only holds when the verifier follows the protocol honestly.

Definition 1.5 (Black-Box Honest-Verifier Zero-Knowledge). The protocol satisfies (blackbox) honest-verifier zero-knowledge if there exists a simulator Sim such that for the honest verifier V and any inputs $(1^{\lambda}, x, w)$ that satisfy R(x, w) = 1 and any distinguisher D:

$$\Pr\left[D\left(\mathsf{view}(V;1^{\lambda},x,w)\right) \to 1\right] - \Pr\left[D\left(\mathsf{Sim}^{V}(1^{\lambda},x)\right) \to 1\right] \right| \le \mathsf{negl}(\lambda)$$

Solution

- 1. Here is a zero-knowledge protocol for graph isomorphism:
 - (a) <u>Inputs</u>: The prover and verifier both take as input a security parameter (1^n) and a pair of graphs $x = (G_0, G_1)$ on *n* vertices. The prover also takes a private input $w = \pi^*$, which is a permutation satisfying: $G_0 = \pi^*(G_1)$.
 - (b) Repeat the following procedure λ times:
 - i. The prover samples a random permutation $\pi_R \leftarrow S_n$ and sends the graph $G_R = \pi_R(G_0)$ to the verifier.
 - ii. The verifier samples $b \leftarrow \{0, 1\}$ and sends it to the prover.
 - iii. If b = 0, the prover sets $\pi_P = \pi_R$, and if b = 1, the prover sets $\pi_P = \pi_R \circ \pi^*$. Then they send π_P to the verifier.
 - iv. The verifier checks that:

$$G_R = \pi_P(G_b)$$

If the check fails, then the protocol ends, and the verifier outputs 0 (reject).

(c) If all rounds of the protocol succeeded without rejection, then the verifier outputs 1 (accept).

2.

Claim 1.6 (Completeness). If $G_0 = \pi^*(G_1)$, and both the prover and verifier follow the protocol honestly, then the verifier will certainly accept.

Proof.

(a) If b = 0, then $\pi_P = \pi_R$, and

$$\pi_P(G_b) = \pi_R(G_0) = G_R$$

(b) If b = 1, then $\pi_P = \pi_R \circ \pi^*$, and

$$\pi_P(G_b) = \pi_R \circ \pi^*(G_1) = \pi_R(G_0) = G_R$$

(c) The verifier's check will pass in both cases, so the verifier will accept the proof.

3.

Claim 1.7 (Soundness). If $G_0 \not\simeq G_1$, then for any adversarial prover P^* interacting with the honest verifier V, the verifier will accept the proof with probability $\leq 2^{-\lambda}$.

Proof.

(a) On each round, the graph G_R cannot be isomorphic to both G_0 and G_1 because otherwise, G_0 would be isomorphic to G_1 . This follows from the transitive property of isomorphic graphs: If $G_R \simeq G_0$ and $G_R \simeq G_1$, then $G_0 \simeq G_1$.

This means that with probability $\geq \frac{1}{2}$, the verifier picks a b such that $G_R \not\simeq G_b$.

- (b) If $G_R \not\simeq G_b$, then there is no permutation π_P that the prover can send for which $G_R = \pi_P(G_b)$, so the verifier will reject the proof.
- (c) We've shown that on each round of the protocol, the probability that the verifier accepts is $\leq \frac{1}{2}$. Since *b* is sampled independently on each round, the probability that the verifier's check passes on all of the λ rounds is $\leq 2^{-\lambda}$. This means that the probability that the verifier accepts the proof is $\leq 2^{-\lambda}$.

4.

Claim 1.8 (Zero-Knowledge). The protocol above satisfies zero-knowledge.

Proof.

(a) <u>Intuition</u>: Hypothetically, if the prover was told b before they had to output G_R or π_P , then it's easy for them to find a (G_R, π_P) that the verifier will accept. They just sample π_P randomly, and then choose $G_R = \pi_P(G_b)$. This can be done without any knowledge of π^* .

The zero-knowledge simulator will do something similar. They will guess b before they have to compute (G_R, π_P) . It their guess is wrong, they can just rewind the protocol and try again.

(b) To prove zero-knowledge, we must construct a simulator Sim that can simulate the verifier's view without knowing π^* .

 $Sim^{V^*}(1^{\lambda}, G_0, G_1)$:

- i. For each round of the protocol:
 - A. Sim samples $b' \leftarrow \{0, 1\}$, samples a random permutation π_P , and computes $G_R = \pi_P(G_b)$. Then they run V^* on input G_R .
 - B. Next, V^* outputs a bit b. If b' = b, then Sim sends π_P to V^* . If $b' \neq b$, then Sim rewinds V^* , and restarts the simulation at the beginning of the round.
- ii. Finally, Sim outputs the verifier's inputs $(1^n, G_0, G_1)$ and any messages sent to or from V^* in the simulated protocol.
- (c) On each round, $\Pr[b' = b] = \frac{1}{2}$ because b' is sampled uniformly at random. Therefore, Sim requires 2 attempts on average to simulate a round correctly.
- (d) On any given round, if b' = b, then the transcript of the simulated protocol has the same distribution as in the real protocol.
 In the real protocol, given (G₀, G₁, b, π^{*}), π_P is a uniformly random permutation,

and G_R is the unique graph satisfying $G_R = \pi_P(G_b)$ (see lemma 1.9). This is the same distribution as in the simulated protocol.

ī

(e) Since the distribution of the verifier's view is identical in the real protocol and the simulated protocol, then for any distinguisher D:

$$\left| \Pr\left[D\left(\mathsf{view}(V^*; 1^\lambda, G_0, G_1, \pi^*)\right) \to 1 \right] - \Pr\left[D\left(\mathsf{Sim}^{V^*}(1^\lambda, G_0, G_1)\right) \to 1 \right] \right| = 0$$

Therefore, the protocol satisfies zero-knowledge.

5.

Lemma 1.9. In the real protocol, given (G_0, G_1, b, π^*) , π_P is a uniformly random permutation, and G_R is the unique graph satisfying: $G_R = \pi_P(G_b)$.

Proof. We will show that π_R is a uniformly random permutation. First, if b = 0, then $\pi_P = \pi_R$, so π_P is uniformly random as well. If b = 1, the $\pi_P = \pi_R \circ \pi^*$. This π_P is uniformly random as well because it is a uniformly random permutation (π_R) composed with a fixed permutation (π^*) .

Next, G_R satisfies $\pi_P(G_b)$, so G_R is completely determined by (G_0, G_1, b, π_P) .

2 Polynomial Commitments

Question: Prove that the KZG commitment scheme is not hiding.

2.1 The KZG Commitment Scheme

- 1. $Gen(1^n)$:
 - (a) Let d be polynomial in n.
 - (b) Set up a bilinear map by sampling

$$\mathsf{pp} = (\mathbb{G}, \mathbb{G}_T, q, g, e) \leftarrow \mathcal{G}(1^n)$$

- (c) Sample $\tau \leftarrow \mathbb{Z}_q^*$.
- (d) Finally, output

$$\mathsf{params} = \left(\mathsf{pp}, g^{\tau}, g^{(\tau^2)}, \dots, g^{(\tau^d)}\right)$$

- 2. Commit(params, f):
 - (a) Let f be a polynomial $\in \mathbb{Z}_q[X]$ of degree $\leq d$:

$$f(X) = \sum_{i=0}^{d} \alpha_i \cdot X^i$$

where every $\alpha_i \in \mathbb{Z}_q$.

(b) Compute and output the commitment:

$$\operatorname{com}_{f} = \prod_{i=0}^{d} \left(g^{(\tau^{i})} \right)^{\alpha_{i}}$$
$$= g^{f(\tau)}$$

- (c) Open:
 - i. Let $z \in \mathbb{Z}_q$ be an input on which to open the commitment, and let s = f(z). Now the sender will prove that s = f(z).
 - ii. The sender computes the polynomial:

$$t(X) := \frac{f(X) - s}{X - z}$$

and a commitment $com_t = Commit(params, t)$. Then they send (z, s, T) to the receiver.

iii. The receiver accepts the opening if and only if:

$$e(\operatorname{com}_f \cdot g^{-s}, g) = e(\operatorname{com}_t, g^{\tau} \cdot g^{-z})$$
(2.1)

Note that equation 2.1 is satisfied if and only if:

$$e(g^{f(\tau)-s},g) = e(g^{t(\tau)},g^{\tau-z})$$
$$f(\tau) - s = t(\tau) \cdot (\tau-z)$$

Solution

(a) <u>Key Ideas</u>: The function Commit(params, f) is deterministic, and two different polynomials will produce different commitments, with overwhelming probability. Given two different polynomials f_0, f_1 , an adversarial receiver can compute Commit(params, f_0) and Commit(params, f_1) on their own and then check which of the two values the sender produces as their commitment.

(b)

Claim 2.1. For any two distinct polynomials $f_0, f_1 \in \mathbb{Z}_q[X]$ of degree $\leq d$:

$$\Pr_{\leftarrow \mathbb{Z}_q^*}[f_0(\tau) \neq f_1(\tau)] \ge 1 - \mathsf{negl}(n)$$

Proof. Since f_0 and f_1 have degree $\leq d$ and $f_0 \neq f_1$, then $f_0(X) - f_1(X)$ is a non-zero polynomial of degree $\leq d$. Therefore, $f_0(X) - f_1(X)$ has at most d roots. Next, $f_0(\tau) = f_1(\tau)$ if and only if τ is a root of $f_0(X) - f_1(X)$. Since τ is sampled uniformly from \mathbb{Z}_q^* ,

$$\Pr[f_0(\tau) = f_1(\tau)] \le \frac{d}{q-1} = \mathsf{negl}(n)$$

where we used the fact that d = poly(n), and $\frac{1}{q} = negl(n)$. Therefore,

$$\Pr_{\tau \leftarrow \mathbb{Z}_q^*}[f_0(\tau) \neq f_1(\tau)] \ge 1 - \mathsf{negl}(n)$$

- (c) Here is how to break the hiding property of the KZG commitment:
 - i. The adversary selects two distinct polynomials $f_0, f_1 \in \mathbb{Z}_q[X]$ of degree $\leq d$, and asks the sender to commit to one of them.
 - ii. The adversary computes $com_0 = Commit(params, f_0)$ and $com_1 = Commit(params, f_1)$. These are deterministic computations.
 - iii. The sender commits to one of the polynomials by computing $com^* = Commit(params, f_b)$ for some $b \in \{0, 1\}$. They send com^* to the adversary.
 - iv. The adversary checks whether $com^* = com_0$. If so, they output 0. If not, they output 1.
- (d) If $f_0(\tau) \neq f_1(\tau)$ (which occurs with overwhelming probability over the choice of τ), then the adversary correctly guesses which polynomial was committed to. This is because

$$com_0 = g^{f_0(\tau)}, \quad com_1 = g^{f_1(\tau)}, \quad com^* = g^{f_b(\tau)}$$

Then $com_0 = com^*$ if and only if $f_0(\tau) = f_b(\tau)$, which occurs if and only if b = 0.

(e) Therefore, this adversary breaks hiding.