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CS 171: Discussion Section 11 (April 15)

1 Zero-Knowledge Protocol for Graph Isomorphism

Two graphs are isomorphic if it is possible to permute the vertices of one graph to obtain
the other graph.

Let G = (V,E) be a graph with n vertices: V = {1, . . . , n} = [n]. Let π : [n] → [n] be a
permutation of the vertices. We can define π(G) to be the graph that results from permuting
G’s vertices according to π.1

More formally, π(G) = (V ′, E′) is a graph with vertex set V ′ = V and edge set

E′ = {(u, v) ∈ V × V :
(
π−1(u), π−1(v)

)
∈ E}

Definition 1.1 (Isomorphic Graphs). Two graphs G0 and G1 are isomorphic (notated
as G0 ≃ G1) if they have the same number of vertices n, and there exists a permutation
π∗ : [n]→ [n] such that

G0 = π∗(G1)

Question: Give a zero-knowledge proof system for the language of isomorphic graphs L =
{(G0, G1) : G0 ≃ G1}. Prove that the scheme satisfies completeness, soundness, and zero-
knowledge.

1It’s technically an abuse of notation to write π(G) since π was defined to take a vertex as input, not a
graph, but we’ll do it anyways.
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1.1 Proof System Definitions

In this problem, the prover’s goal is to convince a verifier that a given pair of graphs (G0, G1)
are isomorphic. We will use the following terminology. The language

L = {(G0, G1) : G0 ≃ G1}

is the set of all pairs of graphs that are isomorphic to each other. x := (G0, G1) is called an
instance, and the prover’s job is convince a verifier that a given instance x is in the language
L.

One simple way to prove that G0 ≃ G1 is to provide a permutation π∗ such that G0 =
π∗(G1). Then a verifier can check whether the condition G0 = π∗(G1) is satisfied.

Let’s put this in more abstract terms. The witness w := π∗ is a proof that x ∈ L. Let
R(x,w) be the function that verifies the witness:

R[(G0, G1), π
∗] =

{
1, G0 = π∗(G1)

0, otherwise

R outputs 1 if and only if w is a valid proof that x ∈ L.

Completeness and Soundness

The goal of a zero-knowledge proof system is to convince the verifier that x ∈ L without
revealing any information about w to the verifier.

Syntax of the protocol: The prover takes inputs (1λ, x, w), and the verifier takes inputs
(1λ, x). λ ∈ N is the security parameter. x is the instance that the prover will try to
prove belongs to L. In order for the proof to succeed, w should be a valid witness for x
(R(x,w) = 1). After some interaction between the prover and verifier, the verifier outputs a
bit indicating whether they accept or reject the proof that x ∈ L.

This protocol should have the following three properties: completeness, soundness, and
zero-knowledge. We’ll define them below.

Let (P, V ) be the honest prover and verifier, respectively, who follow the protocol as-
written. Let (P ∗, V ∗) be a dishonest prover and verifier, respectively, who may deviate
from the protocol.

Completeness says that a valid proof will be accepted with overwhelming probability.

Definition 1.2 (Completeness). The protocol satisfies completeness if when P (1λ, x, w)
and V (1λ, x) interact and their inputs satisfy R(x,w) = 1, then the verifier will accept the
proof with probability ≥ 1− negl(λ).

Soundness says that if x /∈ L, then no adversarial prover will be able to “trick” the verifier
into accepting the proof with greater than negligible probability.

Definition 1.3 (Soundness). The protocol satisfies soundness if for any x /∈ L and any
adversarial prover P ∗, when P ∗ and V (1λ, x) interact, then the verifier will accept the proof
with probability ≤ negl(λ).
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Zero-Knowledge

Zero-knowledge says that an adversarial verifier cannot learn anything about w during the
protocol because the information available to the verifier (their view) can be simulated with-
out knowledge of w.

To make this definition more formal, let’s establish some notation.

• When V ∗(1λ, x) interacts with P (1λ, x, w), let the verifier’s view, view(V ∗; 1λ, x, w), be
a list of the verifier’s inputs (1λ, x), any messages sent to or from the verifier during
the protocol, and anything output by the verifier.

• Let the simulator Sim be an algorithm that tries to simulate the verifier’s view given
only (1λ, x). Note that Sim is not given w.

Next, Sim is given black-box access to V ∗ (notated as SimV ∗
). This means Sim can run

V ∗ on any inputs of its choice and rewind V ∗ to any step, but it cannot modify the
internal workings of V ∗.

Finally, the expected value of Sim’s runtime should be polynomial in the size of Sim’s
inputs.

• Let the distinguisher D be an algorithm that outputs a bit and tries to distinguish the
verifier’s real view from the one produced by the simulator.

Informally, the protocol satisfies zero-knowledge if whenever R(x,w) = 1, the distin-
guisher cannot distinguish the real view from the simulated view.

Here is a more-formal definition:

Definition 1.4 (Black-Box Zero-Knowledge). The protocol satisfies (black-box) zero-knowledge
if there exists a simulator Sim such that for any adversarial V ∗ and any inputs (1λ, x, w) that
satisfy R(x,w) = 1 and any distinguisher D:∣∣∣∣∣Pr [D(

view(V ∗; 1λ, x, w)
)
→ 1

]
− Pr

[
D
(
SimV ∗

(1λ, x)
)
→ 1

]∣∣∣∣∣ ≤ negl(λ)

Finally, honest-verifier zero-knowledge is a weaker form of security in which zero-
knowledge only holds when the verifier follows the protocol honestly.

Definition 1.5 (Black-Box Honest-Verifier Zero-Knowledge). The protocol satisfies (black-
box) honest-verifier zero-knowledge if there exists a simulator Sim such that for the honest
verifier V and any inputs (1λ, x, w) that satisfy R(x,w) = 1 and any distinguisher D:∣∣∣∣∣Pr [D(

view(V ; 1λ, x, w)
)
→ 1

]
− Pr

[
D
(
SimV (1λ, x)

)
→ 1

]∣∣∣∣∣ ≤ negl(λ)
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Solution

1. Here is a zero-knowledge protocol for graph isomorphism:

(a) Inputs: The prover and verifier both take as input a security parameter (1n) and
a pair of graphs x = (G0, G1) on n vertices. The prover also takes a private input
w = π∗, which is a permutation satisfying: G0 = π∗(G1).

(b) Repeat the following procedure λ times:

i. The prover samples a random permutation πR ← Sn and sends the graph
GR = πR(G0) to the verifier.

ii. The verifier samples b← {0, 1} and sends it to the prover.

iii. If b = 0, the prover sets πP = πR, and if b = 1, the prover sets πP = πR ◦ π∗.
Then they send πP to the verifier.

iv. The verifier checks that:
GR = πP (Gb)

If the check fails, then the protocol ends, and the verifier outputs 0 (reject).

(c) If all rounds of the protocol succeeded without rejection, then the verifier outputs
1 (accept).

2.

Claim 1.6 (Completeness). If G0 = π∗(G1), and both the prover and verifier follow
the protocol honestly, then the verifier will certainly accept.

Proof.

(a) If b = 0, then πP = πR, and

πP (Gb) = πR(G0) = GR

(b) If b = 1, then πP = πR ◦ π∗, and

πP (Gb) = πR ◦ π∗(G1) = πR(G0) = GR

(c) The verifier’s check will pass in both cases, so the verifier will accept the proof.

3.

Claim 1.7 (Soundness). If G0 ̸≃ G1, then for any adversarial prover P ∗ interacting
with the honest verifier V , the verifier will accept the proof with probability ≤ 2−λ.

Proof.
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(a) On each round, the graph GR cannot be isomorphic to both G0 and G1 because
otherwise, G0 would be isomorphic toG1. This follows from the transitive property
of isomorphic graphs: If GR ≃ G0 and GR ≃ G1, then G0 ≃ G1.

This means that with probability ≥ 1
2 , the verifier picks a b such that GR ̸≃ Gb.

(b) If GR ̸≃ Gb, then there is no permutation πP that the prover can send for which
GR = πP (Gb), so the verifier will reject the proof.

(c) We’ve shown that on each round of the protocol, the probability that the verifier
accepts is ≤ 1

2 . Since b is sampled independently on each round, the probability
that the verifier’s check passes on all of the λ rounds is ≤ 2−λ. This means that
the probability that the verifier accepts the proof is ≤ 2−λ.

4.

Claim 1.8 (Zero-Knowledge). The protocol above satisfies zero-knowledge.

Proof.

(a) Intuition: Hypothetically, if the prover was told b before they had to output GR

or πP , then it’s easy for them to find a (GR, πP ) that the verifier will accept.
They just sample πP randomly, and then choose GR = πP (Gb). This can be done
without any knowledge of π∗.

The zero-knowledge simulator will do something similar. They will guess b before
they have to compute (GR, πP ). It their guess is wrong, they can just rewind the
protocol and try again.

(b) To prove zero-knowledge, we must construct a simulator Sim that can simulate
the verifier’s view without knowing π∗.

SimV ∗
(1λ, G0, G1):

i. For each round of the protocol:

A. Sim samples b′ ← {0, 1}, samples a random permutation πP , and computes
GR = πP (Gb). Then they run V ∗ on input GR.

B. Next, V ∗ outputs a bit b. If b′ = b, then Sim sends πP to V ∗. If b′ ̸= b,
then Sim rewinds V ∗, and restarts the simulation at the beginning of the
round.

ii. Finally, Sim outputs the verifier’s inputs (1n, G0, G1) and any messages sent
to or from V ∗ in the simulated protocol.

(c) On each round, Pr[b′ = b] = 1
2 because b′ is sampled uniformly at random. There-

fore, Sim requires 2 attempts on average to simulate a round correctly.

(d) On any given round, if b′ = b, then the transcript of the simulated protocol has
the same distribution as in the real protocol.

In the real protocol, given (G0, G1, b, π
∗), πP is a uniformly random permutation,

and GR is the unique graph satisfying GR = πP (Gb) (see lemma 1.9). This is the
same distribution as in the simulated protocol.
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(e) Since the distribution of the verifier’s view is identical in the real protocol and the
simulated protocol, then for any distinguisher D:∣∣∣∣∣Pr [D(

view(V ∗; 1λ, G0, G1, π
∗)
)
→ 1

]
− Pr

[
D
(
SimV ∗

(1λ, G0, G1)
)
→ 1

]∣∣∣∣∣ = 0

Therefore, the protocol satisfies zero-knowledge.

5.

Lemma 1.9. In the real protocol, given (G0, G1, b, π
∗), πP is a uniformly random

permutation, and GR is the unique graph satisfying: GR = πP (Gb).

Proof. We will show that πR is a uniformly random permutation. First, if b = 0, then
πP = πR, so πP is uniformly random as well. If b = 1, the πP = πR ◦ π∗. This πP is
uniformly random as well because it is a uniformly random permutation (πR) composed
with a fixed permutation (π∗).

Next, GR satisfies πP (Gb), so GR is completely determined by (G0, G1, b, πP ).
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2 Polynomial Commitments

Question: Prove that the KZG commitment scheme is not hiding.

2.1 The KZG Commitment Scheme

1. Gen(1n):

(a) Let d be polynomial in n.

(b) Set up a bilinear map by sampling

pp = (G,GT , q, g, e)← G(1n)

(c) Sample τ ← Z∗q .
(d) Finally, output

params =
(
pp, gτ , g(τ

2), . . . , g(τ
d)
)

2. Commit(params, f):

(a) Let f be a polynomial ∈ Zq[X] of degree ≤ d:

f(X) =
d∑

i=0

αi ·Xi

where every αi ∈ Zq.

(b) Compute and output the commitment:

comf =
d∏

i=0

(
g(τ

i)
)αi

= gf(τ)

(c) Open:

i. Let z ∈ Zq be an input on which to open the commitment, and let s = f(z).
Now the sender will prove that s = f(z).

ii. The sender computes the polynomial:

t(X) :=
f(X)− s

X − z

and a commitment comt = Commit(params, t). Then they send (z, s, T ) to the
receiver.

iii. The receiver accepts the opening if and only if:

e(comf · g−s, g) = e(comt, g
τ · g−z) (2.1)
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Note that equation 2.1 is satisfied if and only if:

e(gf(τ)−s, g) = e(gt(τ), gτ−z)

f(τ)− s = t(τ) · (τ − z)

Solution

(a) Key Ideas: The function Commit(params, f) is deterministic, and two different
polynomials will produce different commitments, with overwhelming probabil-
ity. Given two different polynomials f0, f1, an adversarial receiver can compute
Commit(params, f0) and Commit(params, f1) on their own and then check which of
the two values the sender produces as their commitment.

(b)

Claim 2.1. For any two distinct polynomials f0, f1 ∈ Zq[X] of degree ≤ d:

Pr
τ←Z∗

q

[f0(τ) ̸= f1(τ)] ≥ 1− negl(n)

Proof. Since f0 and f1 have degree ≤ d and f0 ̸= f1, then f0(X) − f1(X) is a
non-zero polynomial of degree ≤ d. Therefore, f0(X)−f1(X) has at most d roots.

Next, f0(τ) = f1(τ) if and only if τ is a root of f0(X)− f1(X). Since τ is sampled
uniformly from Z∗q ,

Pr[f0(τ) = f1(τ)] ≤
d

q − 1
= negl(n)

where we used the fact that d = poly(n), and 1
q = negl(n).

Therefore,
Pr

τ←Z∗
q

[f0(τ) ̸= f1(τ)] ≥ 1− negl(n)

(c) Here is how to break the hiding property of the KZG commitment:

i. The adversary selects two distinct polynomials f0, f1 ∈ Zq[X] of degree ≤ d,
and asks the sender to commit to one of them.

ii. The adversary computes com0 = Commit(params, f0) and com1 = Commit(params, f1).
These are deterministic computations.

iii. The sender commits to one of the polynomials by computing com∗ = Commit(params, fb)
for some b ∈ {0, 1}. They send com∗ to the adversary.

iv. The adversary checks whether com∗ = com0. If so, they output 0. If not, they
output 1.

(d) If f0(τ) ̸= f1(τ) (which occurs with overwhelming probability over the choice of
τ), then the adversary correctly guesses which polynomial was committed to. This
is because

com0 = gf0(τ), com1 = gf1(τ), com∗ = gfb(τ)

Then com0 = com∗ if and only if f0(τ) = fb(τ), which occurs if and only if b = 0.
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(e) Therefore, this adversary breaks hiding.
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