
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 11 (April 15)

1 Zero-Knowledge Protocol for Graph Isomorphism

Two graphs are isomorphic if it is possible to permute the vertices of one graph to obtain
the other graph.

Let G = (V,E) be a graph with n vertices: V = {1, . . . , n} = [n]. Let π : [n] → [n] be a
permutation of the vertices. We can define π(G) to be the graph that results from permuting
G’s vertices according to π.1

More formally, π(G) = (V ′, E′) is a graph with vertex set V ′ = V and edge set

E′ = {(u, v) ∈ V × V :
(
π−1(u), π−1(v)

)
∈ E}

Definition 1.1 (Isomorphic Graphs). Two graphs G0 and G1 are isomorphic (notated
as G0 ≃ G1) if they have the same number of vertices n, and there exists a permutation
π∗ : [n]→ [n] such that

G0 = π∗(G1)

Question: Give a zero-knowledge proof system for the language of isomorphic graphs L =
{(G0, G1) : G0 ≃ G1}. Prove that the scheme satisfies completeness, soundness, and zero-
knowledge.

1It’s technically an abuse of notation to write π(G) since π was defined to take a vertex as input, not a
graph, but we’ll do it anyways.

1



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

1.1 Proof System Definitions

In this problem, the prover’s goal is to convince a verifier that a given pair of graphs (G0, G1)
are isomorphic. We will use the following terminology. The language

L = {(G0, G1) : G0 ≃ G1}

is the set of all pairs of graphs that are isomorphic to each other. x := (G0, G1) is called an
instance, and the prover’s job is convince a verifier that a given instance x is in the language
L.

One simple way to prove that G0 ≃ G1 is to provide a permutation π∗ such that G0 =
π∗(G1). Then a verifier can check whether the condition G0 = π∗(G1) is satisfied.

Let’s put this in more abstract terms. The witness w := π∗ is a proof that x ∈ L. Let
R(x,w) be the function that verifies the witness:

R[(G0, G1), π
∗] =

{
1, G0 = π∗(G1)

0, otherwise

R outputs 1 if and only if w is a valid proof that x ∈ L.

Completeness and Soundness

The goal of a zero-knowledge proof system is to convince the verifier that x ∈ L without
revealing any information about w to the verifier.

Syntax of the protocol: The prover takes inputs (1λ, x, w), and the verifier takes inputs
(1λ, x). λ ∈ N is the security parameter. x is the instance that the prover will try to
prove belongs to L. In order for the proof to succeed, w should be a valid witness for x
(R(x,w) = 1). After some interaction between the prover and verifier, the verifier outputs a
bit indicating whether they accept or reject the proof that x ∈ L.

This protocol should have the following three properties: completeness, soundness, and
zero-knowledge. We’ll define them below.

Let (P, V ) be the honest prover and verifier, respectively, who follow the protocol as-
written. Let (P ∗, V ∗) be a dishonest prover and verifier, respectively, who may deviate
from the protocol.

Completeness says that a valid proof will be accepted with overwhelming probability.

Definition 1.2 (Completeness). The protocol satisfies completeness if when P (1λ, x, w)
and V (1λ, x) interact and their inputs satisfy R(x,w) = 1, then the verifier will accept the
proof with probability ≥ 1− negl(λ).

Soundness says that if x /∈ L, then no adversarial prover will be able to “trick” the verifier
into accepting the proof with greater than negligible probability.

Definition 1.3 (Soundness). The protocol satisfies soundness if for any x /∈ L and any
adversarial prover P ∗, when P ∗ and V (1λ, x) interact, then the verifier will accept the proof
with probability ≤ negl(λ).

2



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Zero-Knowledge

Zero-knowledge says that an adversarial verifier cannot learn anything about w during the
protocol because the information available to the verifier (their view) can be simulated with-
out knowledge of w.

To make this definition more formal, let’s establish some notation.

• When V ∗(1λ, x) interacts with P (1λ, x, w), let the verifier’s view, view(V ∗; 1λ, x, w), be
a list of the verifier’s inputs (1λ, x), any messages sent to or from the verifier during
the protocol, and anything output by the verifier.

• Let the simulator Sim be an algorithm that tries to simulate the verifier’s view given
only (1λ, x). Note that Sim is not given w.

Next, Sim is given black-box access to V ∗ (notated as SimV ∗
). This means Sim can run

V ∗ on any inputs of its choice and rewind V ∗ to any step, but it cannot modify the
internal workings of V ∗.

Finally, the expected value of Sim’s runtime should be polynomial in the size of Sim’s
inputs.

• Let the distinguisher D be an algorithm that outputs a bit and tries to distinguish the
verifier’s real view from the one produced by the simulator.

Informally, the protocol satisfies zero-knowledge if whenever R(x,w) = 1, the distin-
guisher cannot distinguish the real view from the simulated view.

Here is a more-formal definition:

Definition 1.4 (Black-Box Zero-Knowledge). The protocol satisfies (black-box) zero-knowledge
if there exists a simulator Sim such that for any adversarial V ∗ and any inputs (1λ, x, w) that
satisfy R(x,w) = 1 and any distinguisher D:∣∣∣∣∣Pr [D(

view(V ∗; 1λ, x, w)
)
→ 1

]
− Pr

[
D
(
SimV ∗

(1λ, x)
)
→ 1

]∣∣∣∣∣ ≤ negl(λ)

Finally, honest-verifier zero-knowledge is a weaker form of security in which zero-
knowledge only holds when the verifier follows the protocol honestly.

Definition 1.5 (Black-Box Honest-Verifier Zero-Knowledge). The protocol satisfies (black-
box) honest-verifier zero-knowledge if there exists a simulator Sim such that for the honest
verifier V and any inputs (1λ, x, w) that satisfy R(x,w) = 1 and any distinguisher D:∣∣∣∣∣Pr [D(

view(V ; 1λ, x, w)
)
→ 1

]
− Pr

[
D
(
SimV (1λ, x)

)
→ 1

]∣∣∣∣∣ ≤ negl(λ)

3



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Polynomial Commitments

Question: Prove that the KZG commitment scheme is not hiding.

2.1 The KZG Commitment Scheme

1. Gen(1n):

(a) Let d be polynomial in n.

(b) Set up a bilinear map by sampling

pp = (G,GT , q, g, e)← G(1n)

(c) Sample τ ← Z∗
q .

(d) Finally, output

params =
(
pp, gτ , g(τ

2), . . . , g(τ
d)
)

2. Commit(params, f):

(a) Let f be a polynomial ∈ Zq[X] of degree ≤ d:

f(X) =

d∑
i=0

αi ·Xi

where every αi ∈ Zq.

(b) Compute and output the commitment:

comf =

d∏
i=0

(
g(τ

i)
)αi

= gf(τ)

(c) Open:

i. Let z ∈ Zq be an input on which to open the commitment, and let s = f(z).
Now the sender will prove that s = f(z).

ii. The sender computes the polynomial:

t(X) :=
f(X)− s

X − z

and a commitment comt = Commit(params, t). Then they send (z, s, T ) to the
receiver.

iii. The receiver accepts the opening if and only if:

e(comf · g−s, g) = e(comt, g
τ · g−z) (2.1)

Note that equation 2.1 is satisfied if and only if:

e(gf(τ)−s, g) = e(gt(τ), gτ−z)

f(τ)− s = t(τ) · (τ − z)

4


