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CS 171: Discussion Section 12 (April 22)

1 Random Variables With a Linear Constraint

Let (A,B,C) be random variables with sample space Zq, and let α, β ∈ Zq\{0} be fixed
values. Consider the following three procedures for sampling (A,B,C):

1. Sample A,B ← Zq independently and uniformly. Set

C = α ·A+ β ·B mod q (1.1)

2. Sample B,C ← Zq independently and uniformly. Set

A =
1

α
(C − β ·B) mod q (1.2)

3. Sample A,C ← Zq independently and uniformly. Set

B =
1

β
(C − α ·A) mod q (1.3)

Question: Prove that all three procedures sample (A,B,C) from the same distribution.

Claim 1.1. Procedures 1, 2 and 3 sample (A,B,C) from the same distribution.

Proof.

1. Intuition: Conditions 1.1, 1.2, and 1.3 are equivalent. (A,B,C) satisfy one of these
conditions if and only if they satisfy the others.

We have three variables and one linear constraint, so there are two degrees of freedom.
Any pair of variables are uniformly distributed because there are two degrees of freedom,
and the third variable is uniquely determined by the other two.

2. In Procedure 1: Given any values a, b, c ∈ Zq, we will compute Pr[A = a,B = b, C = c].

If c ̸= α · a+ β · b mod q, then

Pr[A = a,B = b, C = c] = 0

Given that A = a and B = b, the only value that C can take is c = α · a+ β · b mod q.

Next, if c = α · a+ β · b mod q, then:

Pr[A = a,B = b, C = c] = Pr
A,B

[A = a,B = b] · Pr
A,B

[C = c|A = a,B = b]

= Pr
A
[A = a] · Pr

B
[B = b] · Pr[C = α · a+ β · b mod q|A = a,B = b]

=
1

q
· 1
q
· 1

=
1

q2

In summary, in procedure 1,

Pr[A = a,B = b, C = c] =

{
1
q2
, if c = α · a+ β · b mod q

0, else
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3. In Procedures 2 and 3, we can also show that for any values a, b, c ∈ Zq,

Pr[A = a,B = b, C = c] =

{
1
q2
, if c = α · a+ β · b mod q

0, else

This follows a similar argument to the case of procedure 1. For the sake of completeness,
we will give full proofs below for proceudres 2 and 3, but some readers may not need
to read any further.

4. In procedure 2, we will compute Pr[A = a,B = b, C = c].

First, if c ̸= α · a+ β · b mod q, then a ̸= 1
α(c− β · b) mod q, so

Pr[A = a,B = b, C = c] = 0

Next, if c = α · a+ β · b mod q, then:

Pr[A = a,B = b, C = c] = Pr
B,C

[B = b, C = c] · Pr
B,C

[A = a|B = b, C = c]

= Pr
B
[B = b] · Pr

C
[C = c] · Pr

[
A =

1

α
(c− β · b) mod q|B = b, C = c

]
=

1

q
· 1
q
· 1

=
1

q2

5. In procedure 3, we will compute Pr[A = a,B = b, C = c].

First, if c ̸= α · a+ β · b mod q, then b ̸= 1
β (c− α · a) mod q, so

Pr[A = a,B = b, C = c] = 0

Next, if c = α · a+ β · b mod q, then:

Pr[A = a,B = b, C = c] = Pr
A,C

[A = a,C = c] · Pr
A,C

[B = b|A = a,C = c]

= Pr
A
[A = a] · Pr

C
[C = c] · Pr

[
B =

1

β
(c− α · a) mod q|A = a,C = c

]
=

1

q
· 1
q
· 1

=
1

q2
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2 Schnorr Proof of Knowledge

The Schnorr protocol seen in lecture 17 allows a prover to prove that they know the discrete
log of h. We will prove that it satisfies honest-verifier zero-knowledge, which means that if
the verifier follows the protocol, then the protocol tells them nothing about logg(h).

Inputs to the protocol: Let (G, q, g) be the parameters of a (cyclic) group of prime order
q, let h ∈ G\{1}, and let w ∈ Zq\{0} be the unique value that satisfies h = gw.

The verifier receives the following tuple x:

x = (G, q, g, h)

and the prover receives (x,w). In the language of proof systems, x is the instance (the
public input), and w is the witness (the prover’s secret input).

Schnorr Protocol:

1. The prover samples k ← Zq and sends i := gk to the verifier.

2. The verifier samples r ← Zq and sends r to the prover.

3. The prover computes s = r · w + k mod q and sends s to the verifier.

4. The verifier accepts if gs = hr · i.

Question: Prove that this protocol satisfies completeness and honest-verifier zero-knowledge.
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2.1 Completeness

Completeness says that the verifier will accept with overwhelming probability if both parties
follow the protocol honestly.

Definition 2.1 (Completeness). The protocol satisfies completeness if when h = gw and
the prover P and verifier V follow the protocol honestly, then

Pr[V accepts] ≥ 1− negl(λ)

where λ is the security parameter.

2.2 Honest Verifier Zero-Knowledge

Intuitively, honest-verifier zero-knowledge (HVZK) says that the verifier should not learn any
information about the secret w during an honest execution of the protocol. More formally,
HVZK says that anything the verifier learns from the protocol (their view) can be simulated
without knowledge of w.

In this protocol, the view of the honest verifier comprises the following variables:

view(V ;x,w) = (G, q, g, h, i, r, s)

The view view(V ;x,w) is a list of all of the verifier’s inputs and any messages sent to and
from the verifier.

The simulator Sim tries to simulate the view view(V ;x,w) of the honest verifier, but
Sim does not receive w as input. Sim does get x as input and gets to run V on any inputs of
its choice.

The protocol satisfies honest-verifier zero-knowledge if there exists a simulator Sim
that simulates the verifier’s view in the honest protocol.

Definition 2.2 (Honest-Verifier Zero-Knowledge). The protocol satisfies honest-verifier
zero-knowledge if there exists a simulator Sim such that if the protocol’s inputs (x,w) satisfy
h = gw and the prover and verifier follow the protocol honestly, then for any distinguisher D:∣∣∣∣∣Pr [D(

view(V ;x,w)
)
→ 1

]
− Pr

[
D
(
SimV (x)

)
→ 1

]∣∣∣∣∣ ≤ negl(λ)

where λ is the security parameter.

4



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Claim 2.3. The Schnorr protocol satisfies completeness.

Proof. If the prover and verifier are honest, then i = gk and s = r·w+k mod q. Furthermore,
we are given that h = gw.

Next,

gs = gr·w+k = (gw)r · gk

= hr · i

So the verifier will accept with probability 1.

Claim 2.4. The Schnorr protocol satisfies honest-verifier zero-knowledge (HVZK).

Proof.

1. To prove HVZK, we must construct a simulator for the view of the verifier.
Construction of SimV (x) :

(a) Sample r, s← Zq independently and uniformly at random.

(b) Compute i = gs · h−r.

(c) Output (G, q, g, h, i, r, s).

Note: The simulator samples (r, s, i) in a different order from the real protocol, which
samples i, then r, then s. This technique, of changing the order of sampling, is com-
monly used by zero-knowledge simulators.

2. Next, we will show that the output distribution of SimV (x) is identical to the distribu-
tion of view(V ;x,w) in the honest protocol.

In the description of SimV (x), we will define k = logg(i). This is analogous to the
k defined in the real protocol. Next, let (K,R, S) be the random variables that take
values (k, r, s) respectively.

In the real protocol, (K,R, S) have the following distribution: first K,R ← Zq are
sampled independently and uniformly at random. Then S is the unique value that
satisfies:

S = R · w +K

In the simulated protocol, SimV (x) samples (K,R, S) as follows: first, R,S ← Zq are
sampled independently and uniformly at random. Then K is the unique value that
satisfies:

K = S −R · w

By claim 1.1, the distribution of (K,R, S) is the same in the real protocol and in the
simulated protocol.

3. Therefore, the output of SimV (x) is identical to the distribution of view(V ;x,w) in the
honest protocol.
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Then for any distinguisher D:∣∣∣∣∣Pr [D(
view(V ;x,w)

)
→ 1

]
− Pr

[
D
(
SimV (x)

)
→ 1

]∣∣∣∣∣ = 0

So the protocol satisfies honest-verifier zero-knowledge.
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