CS 171: Discussion 2 (Jan 29)

1. Equivalence of Definitions

You are given an encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} that satisfies the condition

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

for every probability distribution M over \mathcal{M}, every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ such that $\operatorname{Pr}[C=c]>0$. Show that for any two messages $m, m^{\prime} \in \mathcal{M}$ and for any $c \in \mathcal{C}$,

$$
\operatorname{Pr}[\operatorname{Enc}(K, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]
$$

Solution Fix any two messages $m, m^{\prime} \in \mathcal{M}$ and $c \in \mathcal{C}$. Define \mathcal{M} to be the uniform distribution over the set $\left\{m, m^{\prime}\right\}$. Then, from the premise, $\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=$ $m]=1 / 2=\operatorname{Pr}\left[M=m^{\prime} \mid C=c\right]$.

Now,

$$
\begin{aligned}
1 / 2=\operatorname{Pr}[M=m \mid C=c] & =\frac{\operatorname{Pr}[C=c \mid M=m] \operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]} \\
& =\frac{\operatorname{Pr}[\operatorname{Enc}(K, m)=c](1 / 2)}{\operatorname{Pr}[C=c]}
\end{aligned}
$$

Hence, $\operatorname{Pr}[\operatorname{Enc}(K, m)=c]=\operatorname{Pr}[C=c]$. By an exact similar argument, we can show that $\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]=\operatorname{Pr}[C=c]$. Thus, $\operatorname{Pr}[\operatorname{Enc}(K, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]$.

2. A Different One-time Pad

Consider the following encryption scheme for the message space $\{0,1\}$.

- Gen: Choose two random bits $a, b \stackrel{\$}{\leftarrow}\{0,1\}$.
- Enc $((a, b), m)$: Choose random $x_{1} \stackrel{\$}{\leftarrow}\{0,1\}$ and compute x_{2} such that $a \cdot x_{1}+b+x_{2}=m$ where + and \cdot are operations over $\operatorname{GF}(2)$.
- $\operatorname{Dec}\left((a, b),\left(x_{1}, x_{2}\right)\right):$ Compute $m=a \cdot x_{1}+b+x_{2}$.

Show that this scheme is perfectly secure. Hint: Use the second (equivalent) definition of perfect secrecy from Q1.

Solution Fix any two messages $m, m^{\prime} \in\{0,1\}$ and a ciphertext $\left(x_{1}, x_{2}\right) \in\{0,1\} \times\{0,1\}$. We will show that

$$
\operatorname{Pr}[\operatorname{Enc}(K, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]
$$

Let $\left(A, B, X_{1}\right)$ be the uniform random variables over $\{0,1\} \times\{0,1\}$. The random variable denoting the key K is given by (A, B) and the first component of the ciphertext is X_{1}.

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{Enc}(K, m)=c] & =\operatorname{Pr}_{K, X_{1}}(\operatorname{Enc}(K, m)=c) \\
& =\operatorname{Pr}_{A, B, X_{1}}\left(A X_{1}+B+x_{2}=m \wedge X_{1}=x_{1}\right) \\
& =(1 / 2){\underset{A}{A, B}}_{\operatorname{Pr}}\left(A x_{1}+B=m-x_{2}\right) \\
& =(1 / 2) \sum_{a \in\{0,1\}} \operatorname{Pr}_{B}\left[a x_{1}+B=m-x_{2} \mid A=a\right] \operatorname{Pr}_{A}[A=a] \\
& =(1 / 2) \sum_{a \in\{0,1\}} \operatorname{Pr}_{B}\left[B=m-x_{2}-a x_{1} \mid A=a\right](1 / 2) \\
& =(1 / 2)(1 / 2)=1 / 4
\end{aligned}
$$

By a similar argument, we can show that $\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]=1 / 4$.

3. Non-Negligible Function

A function $f: \mathbb{Z}^{+} \rightarrow[0,1]$ is a negligible function if \forall polynomials $p(\cdot), \exists N \in \mathbb{Z}^{+}$such that $\forall n>N$ we have $f(n)<\frac{1}{p(n)}$.
Define a non-negligible function using the negation of the definition of a negligible function. See https://en.wikipedia.org/wiki/Universal_quantification.

Solution A function $f: \mathbb{Z}^{+} \rightarrow[0,1]$ is a non-negligible function if \exists polynomials $p(\cdot)$ such that $\forall N \in \mathbb{Z}^{+}, \exists n>N$ such that we have $f(n) \geq \frac{1}{p(n)}$.

