CS 171: Discussion Section 3 (Feb 5)

1. Pseudorandom Generators

Let $F, G : \{0, 1\}^n \to \{0, 1\}^{3n}$ be pseudorandom generators. For each of the functions below, prove or disprove that H is necessarily a pseudorandom generator.

(a)
$$H(s_0s_1...s_{n-1}) := G(s_{n-1}s_{n-2}...s_0).$$

(b) $H(s) := G(s)_{1,\dots,2n}$ (i.e., the first 2n bits of G(s)).

(c)
$$H(s) = G(s) ||F(s)|$$
.

1

2. Equivalence of Definitions

Consider the following variant of CPA secure definition.

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} on input 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$ produces a tuple of messages $(m_{0,1}, \ldots, m_{0,r})$ and $(m_{1,1}, \ldots, m_{1,r})$ where $m_{0,i}$ and $m_{1,i}$ have the same length.
- 3. A uniform bit $b \in \{0, 1\}$ is chosen and for each $i \in [r]$, c_i is generated as $\mathsf{Enc}_k(m_{b,i})$ and the tuple of ciphertexts (c_1, \ldots, c_r) is given to the adversary.
- 4. The adversary \mathcal{A} continues to have oracle access to $\mathsf{Enc}_k(\cdot)$ and outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if and only if b = b'.

We say that an encryption scheme to be strong CPA secure if for every \mathcal{A} there is a negligible function ν such that:

$$\Pr[PrivK_{\mathcal{A},\Pi}^{S-CPA}(n)=1] \le 1/2 + \nu(n)$$

Show that the strong CPA security is equivalent to CPA security.