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CS 171: Discussion Section 6 (2/26)

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudorandom
function F that maps {0, 1}n × {0, 1}n → {0, 1}n. The differences between schemes 1 and 2
are shown in red.

Show that each of the following MAC schemes is insecure.

Scheme 1:

1. Gen(1n): Output k ← {0, 1}n.

2. Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t = F (k,m0)⊕ F (k,m1)

3. Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

Scheme 2:

1. Gen(1n): Output k ← {0, 1}n.

2. Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t = F (k,m0)||F (k,m1)

3. Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

Solution

1. For scheme 1: the adversary A does not have to make any queries. It just outputs the
message m = m0||m0 for an arbitrary m0 ∈ {0, 1}n, together with a tag t = 0n. A
succeeds with probability 1 because for any key k, Mac(k,m) = F (k,m0)⊕F (k,m0) =
0n.

2. For scheme 2: let adversary A do the following:

(a) Pick a message m = m0||m1 where m0,m1 ∈ {0, 1}n, m0 ̸= m1.

(b) Query Mac(k, ·) on m to obtain

Mac(k,m) = F (k,m0)︸ ︷︷ ︸
=:t0

||F (k,m1)︸ ︷︷ ︸
=:t1

(c) Output message m∗ = m1||m0 and tag t∗ = t1||t0.

We will argue that A succeeds with probability 1. Note that m∗ has not yet been
submitted as a query to Mac(k, ·) because m0 ̸= m1. Furthermore, Verify(k,m∗, t∗) = 1
because Mac(k,m∗) = F (k,m1)||F (k,m0) = t1||t0 = t∗.
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2 Difference Between Regular and Strong Security for MACs

Construct a MAC MAC′ := (Gen′,Mac′,Verify′) that is secure but not strongly secure. In
your construction, you may start with a secure MAC, MAC := (Gen,Mac,Verify).

Solution
Construction of MAC′:

• Gen′(1n): Run Gen(1n).

• Mac′(k,m):

1. Compute t = Mac(k,m).

2. Sample b← {0, 1}.
3. Output t′ := t||b.

• Verify′(k,m, t): Let ttruncated be t with the final bit removed. Run Verify(k,m, ttruncated),
and output the result.

Claim 2.1. MAC′ is a secure message authentication code.

Proof.

1. Overview: Assume toward contradiction that there is an adversary A that can break the
security of MAC′. Then we will construct an adversary B that can break the security
of MAC. This is a contradiction because MAC is known to be secure. Therefore, our
assumption was false, and in fact, MAC′ is secure.

2. Construction of B:

(a) B runs A and simulates the security game for MAC′, which A is designed to play
in.

(b) When A outputs a query mi for the Mac′(k, ·) oracle,
i. B forwards the query mi to its oracle for Mac(k, ·) to obtain ti := Mac(k,mi).

ii. Then B samples a bit bi ← {0, 1},
iii. and sends the tag t′i := (ti||bi) to A.

(c) In the end, when A outputs (m∗, t∗), B removes the last bit of t∗. Let t∗truncated be
t∗ with the last bit removed. Finally, B outputs (m∗, t∗truncated).

3. Note that B correctly simulates the security game for MAC′ with A as the adversary.
In particular, B correctly simulates A’s queries to the Mac′(k, ·) oracle.

4. We claim that if A outputs an (m∗, t∗) that would win in the simulation of the MAC′

security game, then B’s output (m∗, t∗truncated) will win in the security game for MAC.
First, m∗ was not previously output as a query by A or B. Second, Verify′(k,m∗, t∗)
would output 1, which implies that Verify(k,m∗, t∗truncated) outputs 1 as well.

5. If A wins the security game for MAC′ with non-negligible probability, then B wins the
security game of MAC with non-negligible probability. Since MAC is secure, this is a
contradiction. So our assumption was false, and in fact, MAC′ is also secure.
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Claim 2.2. MAC′ is not strongly secure.

Proof.

1. The strong security game differs from the regular security game in that the adversary
can win even if they output a valid tag on a message that was previously queried. More
specifically, the adversary wins the strong security game if it outputs an (m∗, t∗) such
that Verify′(k,m∗, t∗) = 1, and the pair (m∗, t∗) was not previously computed by the
oracle for Mac′(k, ·) during the query phase. For more detail, see Katz & Lindell, 3rd
edition, definition 4.3.

2. We will construct an adversaryA that wins the strong security game with non-negligible
probability.

Description of A:

(a) A outputs a query for an arbitrary message m and receives in response t :=
Mac′(k,m).

(b) Let b be the last bit of t, and let ttruncated be t with the last bit removed. Then A
chooses a new tag

t′ = ttruncated||(b⊕ 1)

and outputs (m, t′).

3. A will win the strong security game with probability 1. First, Verify′(k,m, t′) = 1
because Verify′ just computes Verify(k,m, ttruncated), which outputs 1. Second, even
though m was previously queried to the Mac′(k, ·) oracle, t′ was not the tag that the
oracle outputted. Therefore, (m, t′) is a valid output for the strong security game.
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3 MACs and Pseudorandom Functions

In the construction of a fixed-length MAC that we saw in lecture (and in construction 4.5 in
the textbook), Mac is a pseudorandom function. However we will show that this feature is
not necessary.

Construct a secure deterministic MAC for n-bit messages such that Mac is not a pseudo-
random function. Note: you may use a pseudorandom function in your construction.

Solution
Construction:
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function.

1. Gen(1n): Sample k ← {0, 1}n.

2. Mac(k,m): Output
t = F (k,m)||m

(see footnote1)

3. Verify(k,m, t): Output 1 if Mac(k,m) = t, and output 0 otherwise.

Claim 3.1. (Gen,Mac,Verify) is a secure MAC.

Proof.

1. Overview: Assume toward contradiction that there is an adversary A that breaks the
MAC security of (Gen,Mac,Verify) (i.e. A’s success probability in the MAC security
game is a non-negligible function of n). Then we will construct an adversary B that
can break the PRF security of F . This is a contradiction because F is known to be
secure. Therefore, our assumption was false, and in fact, (Gen,Mac,Verify) is secure.

2. Construction of B:

(a) B runs A and simulates the MAC security game, which A is designed to play in.

(b) When A outputs a query mi for the Mac(k, ·) oracle,
i. B forwards the query mi to its oracle to obtain either si = F (k,mi) or si =

R(mi), where R is a truly random function.

ii. Then B sends the tag ti := (si||mi) to A.
(c) In the end, when A outputs (m∗, t∗):

i. B queries its oracle on m∗ to obtain either s∗ = F (k,m∗) or s∗ = R(m∗).

ii. B checks that (s∗||m∗) = t∗, and checks that m∗ was not previously queried
by A. If both checks pass, then B outputs 1. Otherwise B outputs 0.

1We could have also chosen to let Mac(k,m) output t = F (k,m)||0n or t = F (k,m)||0. We claim (but
won’t prove) that with these other constructions, (Gen,Mac,Verify) would be a secure MAC, but Mac would
not be a PRF.
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3. Pseudorandom Case: We will show that Pr[BF (k,·) = 1] = non-negl(n).

Note that if B is querying F (k, ·), then B correctly simulates the MAC security game for
(Gen,Mac,Verify). In step b, B correctly simulates A’s queries to the Mac(k, ·) oracle.
In step c, B outputs 1 if and only if the MAC challenger would have accepted (m∗, t∗).

This means that Pr[BF (k,·) = 1] equals the probability that A wins the MAC security
game, which is non-negligible.

4. Truly Random Case: We will show that Pr[BR(·) = 1] = negl(n).

If B outputs 1, that means m∗ was not previously queried by A. Since the function R
was sampled uniformly at random, then the value of R(m∗), given all of the queries and
responses previously made by A, is uniformly random. The probability that A outputs
a t∗ such that t∗1,...,n = R(m∗) is 2−n. Therefore, Pr[BR(·) = 1] ≤ 2−n, so Pr[BR(·) = 1]
is negligible.

5. In summary, ∣∣Pr[BF (k,·) = 1]− Pr[BR(·) = 1]
∣∣ = ∣∣non-negl(n)− negl(n)

∣∣
which is non-negligible. Then B would break the PRF security of F . However, this is
a contradiction because F is secure. Therefore, our initial assumption was false, and in
fact, (Gen,Mac,Verify) is a secure MAC.

Claim 3.2. Mac is not a secure pseudorandom function.

Proof.

1. Construction: Let’s construct a distinguisher D that breaks the pseudorandomness of
Mac.

(a) D submits a query m ∈ {0, 1}n and receives either t = F (k,m)||m or t = R(m),
where R is sampled uniformly at random from the set of functions mapping
{0, 1}n → {0, 1}2n.

(b) If the last n bits of t equal m, then D outputs 1. Otherwise, D outputs 0.

2. Pseudorandom Case: Pr[DMac(k,·) = 1] = 1 because the last n bits of Mac(k,m) are
always equal to m.

3. Truly Random Case: If D is given query access to a truly random function R, then the
probability that the last n bits of R(m) equal m is 2−n, where the probability is taken
over the randomness of sampling R. This implies that Pr[DR(·) = 1] = 2−n.

4. In summary: ∣∣Pr[DMac(k,·) = 1]− Pr[DR(·) = 1]
∣∣ = 1− 2−n

which is non-negligible. Therefore, Mac is not a secure pseudorandom function.
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