
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 6 (2/26)

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudorandom
function F that maps {0, 1}n × {0, 1}n → {0, 1}n. The differences between schemes 1 and 2
are shown in red.

Show that each of the following MAC schemes is insecure.

Scheme 1:

1. Gen(1n): Output k ← {0, 1}n.

2. Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t = F (k,m0)⊕ F (k,m1)

3. Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

Scheme 2:

1. Gen(1n): Output k ← {0, 1}n.

2. Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t = F (k,m0)||F (k,m1)

3. Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

Solution

1. For scheme 1: the adversary A does not have to make any queries. It just outputs the
message m = m0||m0 for an arbitrary m0 ∈ {0, 1}n, together with a tag t = 0n. A
succeeds with probability 1 because for any key k, Mac(k,m) = F (k,m0)⊕F (k,m0) =
0n.

2. For scheme 2: let adversary A do the following:

(a) Pick a message m = m0||m1 where m0,m1 ∈ {0, 1}n, m0 ̸= m1.

(b) Query Mac(k, ·) on m to obtain

Mac(k,m) = F (k,m0)︸ ︷︷ ︸
=:t0

||F (k,m1)︸ ︷︷ ︸
=:t1

(c) Output message m∗ = m1||m0 and tag t∗ = t1||t0.

We will argue that A succeeds with probability 1. Note that m∗ has not yet been
submitted as a query to Mac(k, ·) because m0 ̸= m1. Furthermore, Verify(k,m∗, t∗) = 1
because Mac(k,m∗) = F (k,m1)||F (k,m0) = t1||t0 = t∗.

1

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Difference Between Regular and Strong Security for MACs

Construct a MAC MAC′ := (Gen′,Mac′,Verify′) that is secure but not strongly secure. In
your construction, you may start with a secure MAC, MAC := (Gen,Mac,Verify).

Solution
Construction of MAC′:

• Gen′(1n): Run Gen(1n).

• Mac′(k,m):

1. Compute t = Mac(k,m).

2. Sample b← {0, 1}.
3. Output t′ := t||b.

• Verify′(k,m, t): Let ttruncated be t with the final bit removed. Run Verify(k,m, ttruncated),
and output the result.

Claim 2.1. MAC′ is a secure message authentication code.

Proof.

1. Overview: Assume toward contradiction that there is an adversary A that can break the
security of MAC′. Then we will construct an adversary B that can break the security
of MAC. This is a contradiction because MAC is known to be secure. Therefore, our
assumption was false, and in fact, MAC′ is secure.

2. Construction of B:

(a) B runs A and simulates the security game for MAC′, which A is designed to play
in.

(b) When A outputs a query mi for the Mac′(k, ·) oracle,
i. B forwards the query mi to its oracle for Mac(k, ·) to obtain ti := Mac(k,mi).

ii. Then B samples a bit bi ← {0, 1},
iii. and sends the tag t′i := (ti||bi) to A.

(c) In the end, when A outputs (m∗, t∗), B removes the last bit of t∗. Let t∗truncated be
t∗ with the last bit removed. Finally, B outputs (m∗, t∗truncated).

3. Note that B correctly simulates the security game for MAC′ with A as the adversary.
In particular, B correctly simulates A’s queries to the Mac′(k, ·) oracle.

4. We claim that if A outputs an (m∗, t∗) that would win in the simulation of the MAC′

security game, then B’s output (m∗, t∗truncated) will win in the security game for MAC.
First, m∗ was not previously output as a query by A or B. Second, Verify′(k,m∗, t∗)
would output 1, which implies that Verify(k,m∗, t∗truncated) outputs 1 as well.

5. If A wins the security game for MAC′ with non-negligible probability, then B wins the
security game of MAC with non-negligible probability. Since MAC is secure, this is a
contradiction. So our assumption was false, and in fact, MAC′ is also secure.

2

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Claim 2.2. MAC′ is not strongly secure.

Proof.

1. The strong security game differs from the regular security game in that the adversary
can win even if they output a valid tag on a message that was previously queried. More
specifically, the adversary wins the strong security game if it outputs an (m∗, t∗) such
that Verify′(k,m∗, t∗) = 1, and the pair (m∗, t∗) was not previously computed by the
oracle for Mac′(k, ·) during the query phase. For more detail, see Katz & Lindell, 3rd
edition, definition 4.3.

2. We will construct an adversaryA that wins the strong security game with non-negligible
probability.

Description of A:

(a) A outputs a query for an arbitrary message m and receives in response t :=
Mac′(k,m).

(b) Let b be the last bit of t, and let ttruncated be t with the last bit removed. Then A
chooses a new tag

t′ = ttruncated||(b⊕ 1)

and outputs (m, t′).

3. A will win the strong security game with probability 1. First, Verify′(k,m, t′) = 1
because Verify′ just computes Verify(k,m, ttruncated), which outputs 1. Second, even
though m was previously queried to the Mac′(k, ·) oracle, t′ was not the tag that the
oracle outputted. Therefore, (m, t′) is a valid output for the strong security game.

3

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3 MACs and Pseudorandom Functions

In the construction of a fixed-length MAC that we saw in lecture (and in construction 4.5 in
the textbook), Mac is a pseudorandom function. However we will show that this feature is
not necessary.

Construct a secure deterministic MAC for n-bit messages such that Mac is not a pseudo-
random function. Note: you may use a pseudorandom function in your construction.

Solution
Construction:
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function.

1. Gen(1n): Sample k ← {0, 1}n.

2. Mac(k,m): Output
t = F (k,m)||m

(see footnote1)

3. Verify(k,m, t): Output 1 if Mac(k,m) = t, and output 0 otherwise.

Claim 3.1. (Gen,Mac,Verify) is a secure MAC.

Proof.

1. Overview: Assume toward contradiction that there is an adversary A that breaks the
MAC security of (Gen,Mac,Verify) (i.e. A’s success probability in the MAC security
game is a non-negligible function of n). Then we will construct an adversary B that
can break the PRF security of F . This is a contradiction because F is known to be
secure. Therefore, our assumption was false, and in fact, (Gen,Mac,Verify) is secure.

2. Construction of B:

(a) B runs A and simulates the MAC security game, which A is designed to play in.

(b) When A outputs a query mi for the Mac(k, ·) oracle,
i. B forwards the query mi to its oracle to obtain either si = F (k,mi) or si =

R(mi), where R is a truly random function.

ii. Then B sends the tag ti := (si||mi) to A.
(c) In the end, when A outputs (m∗, t∗):

i. B queries its oracle on m∗ to obtain either s∗ = F (k,m∗) or s∗ = R(m∗).

ii. B checks that (s∗||m∗) = t∗, and checks that m∗ was not previously queried
by A. If both checks pass, then B outputs 1. Otherwise B outputs 0.

1We could have also chosen to let Mac(k,m) output t = F (k,m)||0n or t = F (k,m)||0. We claim (but
won’t prove) that with these other constructions, (Gen,Mac,Verify) would be a secure MAC, but Mac would
not be a PRF.

4

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3. Pseudorandom Case: We will show that Pr[BF (k,·) = 1] = non-negl(n).

Note that if B is querying F (k, ·), then B correctly simulates the MAC security game for
(Gen,Mac,Verify). In step b, B correctly simulates A’s queries to the Mac(k, ·) oracle.
In step c, B outputs 1 if and only if the MAC challenger would have accepted (m∗, t∗).

This means that Pr[BF (k,·) = 1] equals the probability that A wins the MAC security
game, which is non-negligible.

4. Truly Random Case: We will show that Pr[BR(·) = 1] = negl(n).

If B outputs 1, that means m∗ was not previously queried by A. Since the function R
was sampled uniformly at random, then the value of R(m∗), given all of the queries and
responses previously made by A, is uniformly random. The probability that A outputs
a t∗ such that t∗1,...,n = R(m∗) is 2−n. Therefore, Pr[BR(·) = 1] ≤ 2−n, so Pr[BR(·) = 1]
is negligible.

5. In summary, ∣∣Pr[BF (k,·) = 1]− Pr[BR(·) = 1]
∣∣ = ∣∣non-negl(n)− negl(n)

∣∣
which is non-negligible. Then B would break the PRF security of F . However, this is
a contradiction because F is secure. Therefore, our initial assumption was false, and in
fact, (Gen,Mac,Verify) is a secure MAC.

Claim 3.2. Mac is not a secure pseudorandom function.

Proof.

1. Construction: Let’s construct a distinguisher D that breaks the pseudorandomness of
Mac.

(a) D submits a query m ∈ {0, 1}n and receives either t = F (k,m)||m or t = R(m),
where R is sampled uniformly at random from the set of functions mapping
{0, 1}n → {0, 1}2n.

(b) If the last n bits of t equal m, then D outputs 1. Otherwise, D outputs 0.

2. Pseudorandom Case: Pr[DMac(k,·) = 1] = 1 because the last n bits of Mac(k,m) are
always equal to m.

3. Truly Random Case: If D is given query access to a truly random function R, then the
probability that the last n bits of R(m) equal m is 2−n, where the probability is taken
over the randomness of sampling R. This implies that Pr[DR(·) = 1] = 2−n.

4. In summary: ∣∣Pr[DMac(k,·) = 1]− Pr[DR(·) = 1]
∣∣ = 1− 2−n

which is non-negligible. Therefore, Mac is not a secure pseudorandom function.

5

