CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 6 (2/26)

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudorandom
function F' that maps {0,1}" x {0,1}" — {0,1}". The differences between schemes 1 and 2
are shown in red.

Show that each of the following MAC schemes is insecure.

Scheme 1:
1. Gen(1™): Output k < {0,1}".
2. Mac(k,m): Let m = mg||m1, where mg,m; € {0,1}". Then Mac outputs

t = F(k,mo) ® F(k,m)

3. Verify(k,m,t): Output 1 if ¢t = Mac(k, m), and output 0 otherwise.
Scheme 2:

1. Gen(1™): Output k «+ {0,1}".

2. Mac(k,m): Let m = mg||mq, where mg, m; € {0,1}". Then Mac outputs

t = F(k,mo)||F(k,mp)

3. Verify(k,m,t): Output 1 if ¢ = Mac(k, m), and output 0 otherwise.
Solution

1. For scheme 1: the adversary A does not have to make any queries. It just outputs the
message m = myg||mo for an arbitrary mgy € {0,1}", together with a tag t = 0". A
succeeds with probability 1 because for any key k, Mac(k,m) = F(k,mg) ® F(k,mg) =
0m.

2. For scheme 2: let adversary A do the following;:

(a) Pick a message m = mg||my where mg, my € {0,1}", mg # m;.
(b) Query Mac(k,-) on m to obtain

Mac(k, m) = F(k,mo) || F(k, m1)
e
=:to =:t1
(¢) Output message m* = mq||mg and tag t* = t1||to.

We will argue that A succeeds with probability 1. Note that m* has not yet been
submitted as a query to Mac(k, -) because mg # my. Furthermore, Verify(k, m*, t*) = 1
because Mac(k, m*) = F(k,m1)||F(k,mg) = t1]||to = t*.

O

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Difference Between Regular and Strong Security for M ACs

Construct a MAC MAC’ := (Gen’, Mac’, Verify’) that is secure but not strongly secure. In
your construction, you may start with a secure MAC, MAC := (Gen, Mac, Verify).

Solution
Construction of MAC':

e Gen’(1™): Run Gen(1™).

e Mac'(k,m):
1. Compute t = Mac(k, m).
2. Sample b < {0, 1}.
3. Output ¢’ := t||b.

o Verify'(k,m,t): Let tyuncated be t with the final bit removed. Run Verify(k, m, tuuncated)
and output the result.

Claim 2.1. MAC' is a secure message authentication code.
Proof.

1. Overview: Assume toward contradiction that there is an adversary A that can break the
security of MAC'. Then we will construct an adversary B that can break the security
of MAC. This is a contradiction because MAC is known to be secure. Therefore, our
assumption was false, and in fact, MAC' is secure.

2. Construction of B:

(a) B runs A and simulates the security game for MAC', which A is designed to play
in.

(b) When A outputs a query m; for the Mac'(k, -) oracle,
i. B forwards the query m; to its oracle for Mac(k, -) to obtain t; := Mac(k, m;).
ii. Then B samples a bit b; « {0, 1},
iii. and sends the tag ¢ := (¢;||b;) to A.
(c) In the end, when A outputs (m*,t*), B removes the last bit of t*. Let ¢ .te
t* with the last bit removed. Finally, B outputs (m*, ¢}).

truncated

q be

3. Note that B correctly simulates the security game for MAC' with A as the adversary.
In particular, B correctly simulates A’s queries to the Mac’(k, -) oracle.

4. We claim that if A outputs an (m*,t*) that would win in the simulation of the MAC'
security game, then B’s output (m*, &} cateq) Will win in the security game for MAC.
First, m* was not previously output as a query by A or B. Second, Verify'(k, m*, t*)

would output 1, which implies that Verify(k, m*, ¢}) outputs 1 as well.

truncated

5. If A wins the security game for MAC' with non-negligible probability, then B wins the
security game of MAC with non-negligible probability. Since MAC is secure, this is a
contradiction. So our assumption was false, and in fact, MAC’ is also secure.

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

O]

Claim 2.2. MAC' is not strongly secure.
Proof.

1. The strong security game differs from the regular security game in that the adversary
can win even if they output a valid tag on a message that was previously queried. More
specifically, the adversary wins the strong security game if it outputs an (m*,t*) such
that Verify’(k, m*,t*) = 1, and the pair (m*,t*) was not previously computed by the
oracle for Mac/(k,) during the query phase. For more detail, see Katz & Lindell, 3rd
edition, definition 4.3.

2. We will construct an adversary A that wins the strong security game with non-negligible
probability.

Description of A:

(a) A outputs a query for an arbitrary message m and receives in response t :=
Mac'(k, m).

(b) Let b be the last bit of ¢, and let tyyncated be t with the last bit removed. Then A
chooses a new tag

t/ - ttruncated”(b 57 1)
and outputs (m,t).
3. A will win the strong security game with probability 1. First, Verify’(k,m,t') = 1
because Verify’ just computes Verify(k, m, tyuncated), Which outputs 1. Second, even

though m was previously queried to the Mac'(k,) oracle, ' was not the tag that the
oracle outputted. Therefore, (m,t’) is a valid output for the strong security game.

U U

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3 MACs and Pseudorandom Functions

In the construction of a fixed-length MAC that we saw in lecture (and in construction 4.5 in
the textbook), Mac is a pseudorandom function. However we will show that this feature is
not necessary.

Construct a secure deterministic MAC for n-bit messages such that Mac is not a pseudo-
random function. Note: you may use a pseudorandom function in your construction.

Solution
Construction:
Let F:{0,1}™ x {0,1}" — {0,1}" be a pseudorandom function.

1. Gen(1™): Sample k «+ {0,1}".

2. Mac(k,m): Output
t = F(k,m)lm

(see footnotel!)
3. Verify(k,m,t): Output 1 if Mac(k, m) = t, and output 0 otherwise.
Claim 3.1. (Gen, Mac, Verify) is a secure MAC.
Proof.

1. Overview: Assume toward contradiction that there is an adversary A that breaks the
MAC security of (Gen,Mac, Verify) (i.e. A’s success probability in the MAC security
game is a non-negligible function of n). Then we will construct an adversary B that
can break the PRF security of F'. This is a contradiction because F' is known to be
secure. Therefore, our assumption was false, and in fact, (Gen, Mac, Verify) is secure.

2. Construction of B:

(a) B runs A and simulates the MAC security game, which A is designed to play in.
(b) When A outputs a query m; for the Mac(k, -) oracle,

i. B forwards the query m; to its oracle to obtain either s; = F(k,m;) or s; =
R(m;), where R is a truly random function.
ii. Then B sends the tag t; := (s;||m;) to A.
(c) In the end, when A outputs (m*,t*):
i. B queries its oracle on m* to obtain either s* = F(k,m*) or s* = R(m*).
ii. B checks that (s*||m*) = t*, and checks that m* was not previously queried
by A. If both checks pass, then B outputs 1. Otherwise B outputs 0.

"We could have also chosen to let Mac(k,m) output ¢t = F(k,m)||0" or t = F(k,m)||0. We claim (but
won’t prove) that with these other constructions, (Gen, Mac, Verify) would be a secure MAC, but Mac would
not be a PRF.

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3. Pseudorandom Case: We will show that Pr[BF(**) = 1] = non-negl(n).

Note that if B is querying F'(k, -), then B correctly simulates the MAC security game for
(Gen, Mac, Verify). In step b, B correctly simulates A’s queries to the Mac(k,) oracle.
In step ¢, B outputs 1 if and only if the MAC challenger would have accepted (m*,t*).

This means that Pr[BF(*) = 1] equals the probability that A wins the MAC security
game, which is non-negligible.

4. Truly Random Case: We will show that Pr[Bf() = 1] = negl(n).

If B outputs 1, that means m* was not previously queried by A. Since the function R
was sampled uniformly at random, then the value of R(m*), given all of the queries and
responses previously made by A, is uniformly random. The probability that A outputs
a t* such that t7 , = R(m”) is 27". Therefore, Pr[BE() = 1] < 277, so Pr[BE() = 1]
is negligible.

5. In summary,
’PI[BF(k") = 1] — Pr[BRO) = 1| = !non—negl(n) — negl(n)|

which is non-negligible. Then B would break the PRF security of F'. However, this is
a contradiction because F' is secure. Therefore, our initial assumption was false, and in
fact, (Gen, Mac, Verify) is a secure MAC.

O

Claim 3.2. Mac s not a secure pseudorandom function.
Proof.

1. Construction: Let’s construct a distinguisher D that breaks the pseudorandomness of
Mac.

(a) D submits a query m € {0,1}" and receives either ¢t = F(k,m)||m or t = R(m),
where R is sampled uniformly at random from the set of functions mapping
{0,1}™ — {0, 1}%".

(b) If the last n bits of ¢ equal m, then D outputs 1. Otherwise, D outputs 0.

2. Pseudorandom Case: Pr[DM2<(:) — 1] = 1 because the last n bits of Mac(k,m) are
always equal to m.

3. Truly Random Case: If D is given query access to a truly random function R, then the
probability that the last n bits of R(m) equal m is 27", where the probability is taken
over the randomness of sampling R. This implies that Pr[DF() = 1] = 27",

4. In summary:
| Pr[pMacth) = 1] — pr[DR0) = 1]| =1 - 27"

which is non-negligible. Therefore, Mac is not a secure pseudorandom function.

O O

