CS 171: Discussion Section 6 (2/26)

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudorandom function F that maps $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$. The differences between schemes 1 and 2 are shown in red.

Show that each of the following MAC schemes is insecure.

Scheme 1:

- 1. Gen (1^n) : Output $k \leftarrow \{0, 1\}^n$.
- 2. Mac(k, m): Let $m = m_0 || m_1$, where $m_0, m_1 \in \{0, 1\}^n$. Then Mac outputs

 $t = F(k, m_0) \oplus F(k, m_1)$

3. Verify(k, m, t): Output 1 if t = Mac(k, m), and output 0 otherwise.

Scheme 2:

- 1. Gen (1^n) : Output $k \leftarrow \{0, 1\}^n$.
- 2. Mac(k, m): Let $m = m_0 || m_1$, where $m_0, m_1 \in \{0, 1\}^n$. Then Mac outputs

 $t = F(k, m_0) ||F(k, m_1)|$

3. Verify(k, m, t): Output 1 if t = Mac(k, m), and output 0 otherwise.

Solution

- 1. For scheme 1: the adversary \mathcal{A} does not have to make any queries. It just outputs the message $m = m_0 || m_0$ for an arbitrary $m_0 \in \{0,1\}^n$, together with a tag $t = 0^n$. \mathcal{A} succeeds with probability 1 because for any key k, $\mathsf{Mac}(k,m) = F(k,m_0) \oplus F(k,m_0) = 0^n$.
- 2. For scheme 2: let adversary \mathcal{A} do the following:
 - (a) Pick a message $m = m_0 || m_1$ where $m_0, m_1 \in \{0, 1\}^n, m_0 \neq m_1$.
 - (b) Query $Mac(k, \cdot)$ on m to obtain

$$\mathsf{Mac}(k,m) = \underbrace{F(k,m_0)}_{=:t_0} || \underbrace{F(k,m_1)}_{=:t_1}$$

(c) Output message $m^* = m_1 ||m_0|$ and tag $t^* = t_1 ||t_0|$.

We will argue that \mathcal{A} succeeds with probability 1. Note that m^* has not yet been submitted as a query to $\mathsf{Mac}(k, \cdot)$ because $m_0 \neq m_1$. Furthermore, $\mathsf{Verify}(k, m^*, t^*) = 1$ because $\mathsf{Mac}(k, m^*) = F(k, m_1) ||F(k, m_0) = t_1||t_0 = t^*$.

2 Difference Between Regular and Strong Security for MACs

Construct a MAC MAC' := (Gen', Mac', Verify') that is secure but not strongly secure. In your construction, you may start with a secure MAC, MAC := (Gen, Mac, Verify).

Solution

Construction of MAC':

- $\operatorname{Gen}'(1^n)$: Run $\operatorname{Gen}(1^n)$.
- Mac'(k,m):
 - 1. Compute t = Mac(k, m).
 - 2. Sample $b \leftarrow \{0, 1\}$.
 - 3. Output t' := t || b.
- Verify'(k, m, t): Let $t_{\text{truncated}}$ be t with the final bit removed. Run Verify $(k, m, t_{\text{truncated}})$, and output the result.

Claim 2.1. MAC' is a secure message authentication code.

Proof.

- 1. <u>Overview:</u> Assume toward contradiction that there is an adversary \mathcal{A} that can break the security of MAC'. Then we will construct an adversary \mathcal{B} that can break the security of MAC. This is a contradiction because MAC is known to be secure. Therefore, our assumption was false, and in fact, MAC' is secure.
- 2. Construction of \mathcal{B} :
 - (a) \mathcal{B} runs \mathcal{A} and simulates the security game for MAC', which \mathcal{A} is designed to play in.
 - (b) When \mathcal{A} outputs a query m_i for the $Mac'(k, \cdot)$ oracle,
 - i. \mathcal{B} forwards the query m_i to its oracle for $Mac(k, \cdot)$ to obtain $t_i := Mac(k, m_i)$.
 - ii. Then \mathcal{B} samples a bit $b_i \leftarrow \{0, 1\}$,
 - iii. and sends the tag $t'_i := (t_i || b_i)$ to \mathcal{A} .
 - (c) In the end, when \mathcal{A} outputs (m^*, t^*) , \mathcal{B} removes the last bit of t^* . Let $t^*_{\text{truncated}}$ be t^* with the last bit removed. Finally, \mathcal{B} outputs $(m^*, t^*_{\text{truncated}})$.
- 3. Note that \mathcal{B} correctly simulates the security game for MAC' with \mathcal{A} as the adversary. In particular, \mathcal{B} correctly simulates \mathcal{A} 's queries to the Mac' (k, \cdot) oracle.
- 4. We claim that if A outputs an (m^{*}, t^{*}) that would win in the simulation of the MAC' security game, then B's output (m^{*}, t^{*}_{truncated}) will win in the security game for MAC. First, m^{*} was not previously output as a query by A or B. Second, Verify'(k, m^{*}, t^{*}) would output 1, which implies that Verify(k, m^{*}, t^{*}_{truncated}) outputs 1 as well.
- 5. If \mathcal{A} wins the security game for MAC' with non-negligible probability, then \mathcal{B} wins the security game of MAC with non-negligible probability. Since MAC is secure, this is a contradiction. So our assumption was false, and in fact, MAC' is also secure.

Claim 2.2. MAC' is not strongly secure.

Proof.

- 1. The strong security game differs from the regular security game in that the adversary can win even if they output a valid tag on a message that was previously queried. More specifically, the adversary wins the strong security game if it outputs an (m^*, t^*) such that $\operatorname{Verify}'(k, m^*, t^*) = 1$, and the pair (m^*, t^*) was not previously computed by the oracle for $\operatorname{Mac}'(k, \cdot)$ during the query phase. For more detail, see Katz & Lindell, 3rd edition, definition 4.3.
- 2. We will construct an adversary \mathcal{A} that wins the strong security game with non-negligible probability.

Description of \mathcal{A} :

- (a) \mathcal{A} outputs a query for an arbitrary message m and receives in response t := Mac'(k, m).
- (b) Let b be the last bit of t, and let $t_{\text{truncated}}$ be t with the last bit removed. Then \mathcal{A} chooses a new tag

$$t' = t_{\text{truncated}} || (b \oplus 1)$$

and outputs (m, t').

3. \mathcal{A} will win the strong security game with probability 1. First, $\operatorname{Verify}'(k, m, t') = 1$ because Verify' just computes $\operatorname{Verify}(k, m, t_{\operatorname{truncated}})$, which outputs 1. Second, even though m was previously queried to the $\operatorname{Mac}'(k, \cdot)$ oracle, t' was not the tag that the oracle outputted. Therefore, (m, t') is a valid output for the strong security game.

3 MACs and Pseudorandom Functions

In the construction of a fixed-length MAC that we saw in lecture (and in construction 4.5 in the textbook), Mac is a pseudorandom function. However we will show that this feature is not necessary.

Construct a secure deterministic MAC for *n*-bit messages such that Mac is not a pseudorandom function. Note: you may use a pseudorandom function in your construction.

Solution

<u>Construction</u>: Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function.

- 1. Gen (1^n) : Sample $k \leftarrow \{0, 1\}^n$.
- 2. Mac(k, m): Output

$$t = F(k, m) || m$$

(see footnote¹)

3. Verify(k, m, t): Output 1 if Mac(k, m) = t, and output 0 otherwise.

Claim 3.1. (Gen, Mac, Verify) is a secure MAC.

Proof.

- 1. <u>Overview</u>: Assume toward contradiction that there is an adversary \mathcal{A} that breaks the MAC security of (Gen, Mac, Verify) (i.e. \mathcal{A} 's success probability in the MAC security game is a non-negligible function of n). Then we will construct an adversary \mathcal{B} that can break the PRF security of F. This is a contradiction because F is known to be secure. Therefore, our assumption was false, and in fact, (Gen, Mac, Verify) is secure.
- 2. Construction of \mathcal{B} :
 - (a) \mathcal{B} runs \mathcal{A} and simulates the MAC security game, which \mathcal{A} is designed to play in.
 - (b) When \mathcal{A} outputs a query m_i for the $Mac(k, \cdot)$ oracle,
 - i. \mathcal{B} forwards the query m_i to its oracle to obtain either $s_i = F(k, m_i)$ or $s_i = R(m_i)$, where R is a truly random function.
 - ii. Then \mathcal{B} sends the tag $t_i := (s_i || m_i)$ to \mathcal{A} .
 - (c) In the end, when \mathcal{A} outputs (m^*, t^*) :
 - i. \mathcal{B} queries its oracle on m^* to obtain either $s^* = F(k, m^*)$ or $s^* = R(m^*)$.
 - ii. \mathcal{B} checks that $(s^*||m^*) = t^*$, and checks that m^* was not previously queried by \mathcal{A} . If both checks pass, then \mathcal{B} outputs 1. Otherwise \mathcal{B} outputs 0.

¹We could have also chosen to let Mac(k,m) output $t = F(k,m)||0^n$ or t = F(k,m)||0. We claim (but won't prove) that with these other constructions, (Gen, Mac, Verify) would be a secure MAC, but Mac would not be a PRF.

3. <u>Pseudorandom Case</u>: We will show that $\Pr[\mathcal{B}^{F(k,\cdot)} = 1] = \mathsf{non-negl}(n)$.

Note that if \mathcal{B} is querying $F(k, \cdot)$, then \mathcal{B} correctly simulates the MAC security game for (Gen, Mac, Verify). In step b, \mathcal{B} correctly simulates \mathcal{A} 's queries to the $Mac(k, \cdot)$ oracle. In step c, \mathcal{B} outputs 1 if and only if the MAC challenger would have accepted (m^*, t^*) . This means that $\Pr[\mathcal{B}^{F(k, \cdot)} = 1]$ equals the probability that \mathcal{A} wins the MAC security game, which is non-negligible.

4. Truly Random Case: We will show that $\Pr[\mathcal{B}^{R(\cdot)} = 1] = \operatorname{\mathsf{negl}}(n)$.

If \mathcal{B} outputs 1, that means m^* was not previously queried by \mathcal{A} . Since the function R was sampled uniformly at random, then the value of $R(m^*)$, given all of the queries and responses previously made by \mathcal{A} , is uniformly random. The probability that \mathcal{A} outputs a t^* such that $t^*_{1,\ldots,n} = R(m^*)$ is 2^{-n} . Therefore, $\Pr[\mathcal{B}^{R(\cdot)} = 1] \leq 2^{-n}$, so $\Pr[\mathcal{B}^{R(\cdot)} = 1]$ is negligible.

5. In summary,

$$\left| \Pr[\mathcal{B}^{F(k,\cdot)} = 1] - \Pr[\mathcal{B}^{R(\cdot)} = 1] \right| = \left| \mathsf{non-negl}(n) - \mathsf{negl}(n) \right|$$

which is non-negligible. Then \mathcal{B} would break the PRF security of F. However, this is a contradiction because F is secure. Therefore, our initial assumption was false, and in fact, (Gen, Mac, Verify) is a secure MAC.

Claim 3.2. Mac is not a secure pseudorandom function.

Proof.

- 1. <u>Construction</u>: Let's construct a distinguisher \mathcal{D} that breaks the pseudorandomness of Mac.
 - (a) \mathcal{D} submits a query $m \in \{0,1\}^n$ and receives either t = F(k,m) || m or t = R(m), where R is sampled uniformly at random from the set of functions mapping $\{0,1\}^n \to \{0,1\}^{2n}$.
 - (b) If the last n bits of t equal m, then \mathcal{D} outputs 1. Otherwise, \mathcal{D} outputs 0.
- 2. <u>Pseudorandom Case</u>: $\Pr[\mathcal{D}^{\mathsf{Mac}(k,\cdot)} = 1] = 1$ because the last *n* bits of $\mathsf{Mac}(k,m)$ are always equal to *m*.
- 3. <u>Truly Random Case</u>: If \mathcal{D} is given query access to a truly random function R, then the probability that the last n bits of R(m) equal m is 2^{-n} , where the probability is taken over the randomness of sampling R. This implies that $\Pr[\mathcal{D}^{R(\cdot)} = 1] = 2^{-n}$.
- 4. In summary:

$$|\Pr[\mathcal{D}^{\mathsf{Mac}(k,\cdot)} = 1] - \Pr[\mathcal{D}^{R(\cdot)} = 1]| = 1 - 2^{-r}$$

which is non-negligible. Therefore, Mac is not a secure pseudorandom function.