CS 171: Discussion Section 7 (March 4)

1 One-way Functions

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way function (OWF), and

let
$$g(x) = f(x) \oplus x$$

Is g(x) necessarily a one-way function? Prove your answer. Note: In your answer, you may use a secure OWF $h : \{0, 1\}^{n/2} \to \{0, 1\}^{n/2}$.

Solution

Claim 1.1. g(x) is not necessarily a one-way function.

Proof. We will construct a one-way function f such that when g is constructed from f, then g is insecure. Note that we must actually prove that our construction of f is a secure OWF.

1. <u>Construction of f</u>: Our construction of f will use another OWF $h : \{0,1\}^{n/2} \to \{0,1\}^{n/2}$. Next, let the input to f take the form $x = (x_0, x_1) \in \{0,1\}^{n/2} \times \{0,1\}^{n/2}$. Then,

let
$$f(x) = 0^{n/2} ||h(x_0)|$$

2.

Claim 1.2. f is a one-way function.

Proof.

- (a) Assume toward contradiction that f is not a OWF. Then there is an adversary \mathcal{A} that wins the OWF security game for f with non-negligible probability. We will use \mathcal{A} to construct an adversary \mathcal{B} that wins the OWF security game for h with non-negligible probability. This implies that h is not a secure OWF, which is a contradiction. Therefore, our original assumption was false, and in fact, f is a (secure) OWF.
- (b) Let us recall the OWF function security game for f:
 - i. The challenger samples $x \leftarrow \{0,1\}^n$ and computes f(x). Then they send f(x) to the adversary \mathcal{A} .

ii. \mathcal{A} outputs x'.

iii. The adversary wins if f(x') = f(x), and they lose otherwise.

If f is not a OWF, then there exists an adversary \mathcal{A} that wins the OWF security game for f with probability non-negl(n).

- (c) Now we will use A to construct an adversary B that wins the OWF security game for h with non-negligible probability.
 Construction of B:
 - i. \mathcal{B} 's challenger samples $x_0 \leftarrow \{0,1\}^{n/2}$ and sends $h(x_0)$ to \mathcal{B} .

- ii. \mathcal{B} computes the string $0^{n/2} || h(x_0)$ and runs $\mathcal{A}(0^{n/2} || h(x_0))$ to obtain $(x'_0, x'_1) \in \{0, 1\}^{n/2} \times \{0, 1\}^{n/2}$.
- iii. \mathcal{B} outputs x'_0 as a preimage of $h(x_0)$.
- (d) <u>Analysis:</u> First, note that \mathcal{B} correctly simulates the OWF security game for f with $\overline{\mathcal{A}}$ as the adversary. \mathcal{A} is supposed to receive f(x), where $x \in \{0,1\}^n$ is sampled uniformly. Since $x_0 \in \{0,1\}^{n/2}$ was sampled uniformly by \mathcal{B} 's challenger, then the distribution of $0^{n/2} ||h(x_0)|$ is the same as the distribution of f(x) for a uniformly random x.

Next, with non-negligible probability, \mathcal{A} will win the simulated security game for f, and in this case \mathcal{B} will win the security game for h. With non-negligible probability, \mathcal{A} will output an (x'_0, x'_1) such that

$$f(x'_0, x'_1) = 0^{n/2} ||h(x_0)|$$

In this case, $h(x'_0) = h(x_0)$. Therefore, \mathcal{B} 's output, x'_0 , will win the security game for h.

(e) Since \mathcal{B} wins the security game for h with non-negligible probability, this implies that h is not secure. This is a contradiction because we were told that h is secure. Therefore, our initial assumption was wrong, and in fact, f is also a secure OWF.

3.

Claim 1.3. For the particular choice of f given above, g is not a secure one-way function.

Proof.

(a) To summarize the constructions above, let $x = (x_0, x_1) \in \{0, 1\}^{n/2} \times \{0, 1\}^{n/2}$. Then,

$$g(x) = (0^{n/2} || h(x_0)) \oplus (x_0, x_1)$$

= $x_0 || (h(x_0) \oplus x_1)$

- (b) Now we will construct an adversary C that breaks the OWF security of g. Construction of C:
 - i. C's challenger samples $x \leftarrow \{0,1\}^n$ sends $g(x) = x_0 || (h(x_0) \oplus x_1)$ to C.
 - ii. From this input, C learns x_0 and $h(x_0) \oplus x_1$.

Then C computes $h(x_0)$ and then $x_1 = h(x_0) \oplus x_1 \oplus h(x_0)$.

- iii. Finally, C outputs (x_0, x_1) .
- (c) C will successfully compute (x_0, x_1) given $g(x_0, x_1)$, so C wins the OWF security game for g with probability 1. Therefore, g is not a secure OWF.

2 Composed Hash Functions

We will show how to compose multiple hash functions to increase their compression factor. Let (Gen_1, H_1) and (Gen_2, H_2) be two fixed-length collision-resistant hash functions (CRHFs), where:

- $H_1^{s_1}$ maps $\mathcal{X} \to \mathcal{Y}$, for any seed $s_1 \leftarrow \mathsf{Gen}_1(1^n)$,
- $H_2^{s_2}$ maps $\mathcal{Y} \to \mathcal{Z}$, for any seed $s_2 \leftarrow \mathsf{Gen}_2(1^n)$, and
- $|\mathcal{X}| > |\mathcal{Y}| > |\mathcal{Z}|$

Define a new hash function (Gen_{comp}, H_{comp}) to be the composition of H_2 and H_1 :

- 1. $\operatorname{\mathsf{Gen}}_{\operatorname{\mathsf{comp}}}(1^n)$: Sample $s_1 \leftarrow \operatorname{\mathsf{Gen}}_1(1^n)$ and $s_2 \leftarrow \operatorname{\mathsf{Gen}}_2(1^n)$, and output $s = (s_1, s_2)$.
- 2. $H^{s}_{comp}(x)$: Let $x \in \mathcal{X}$. Output $H^{s_2}_2(H^{s_1}_1(x))$.

Prove that (Gen_{comp}, H_{comp}) is a secure collision-resistant hash function.

Solution

Theorem 2.1. (Gen_{comp}, H_{comp}) is a (secure) collision-resistant hash function.

Proof.

- 1. <u>Overview</u>: We will show that if there were an adversary that could break the CRHF security of $(\text{Gen}_{comp}, H_{comp})$, by finding a collision with non-negligible probability, then we could use the collision in H_{comp} to find a collision in H_1 or H_2 . This would allow us to break the security of H_1 or H_2 .
- 2. The Collision-Finder algorithm below uses a collision in H^s_{comp} to find a collision in $H^{s_1}_1$ or $H^{s_2}_2$. Recall that a collision in H^s_{comp} is two values $x, x' \in \mathcal{X}$ such that $x \neq x'$, and $H^s_{\text{comp}}(x) = H^s_{\text{comp}}(x')$.

Collision-Finder(s, x, x'):

- (a) Compute $y = H_1^{s_1}(x)$ and $y' = H_1^{s_1}(x')$.
- (b) If y = y', then output (x, x') as the collision in $H_1^{s_1}$.
- (c) If $y \neq y'$, then output (y, y') as the collision in $H_2^{s_2}$.

Claim 2.2. If (x, x') is a collision in H^s_{comp} , then Collision-Finder(s, x, x') outputs a collision in $H^{s_1}_1$ or a collision in $H^{s_2}_2$.

Proof. If y = y', then (x, x') are a collision in $H_1^{s_1}$ because $H_1^{s_1}(x) = H_1^{s_1}(x')$, and $x \neq x'$. Next, if $y \neq y'$, then (y, y') are a collision in $H_2^{s_2}$ because

$$H_2^{s_2}(y) = H_{\rm comp}^s(x) = H_{\rm comp}^s(x') = H_2^{s_2}(y')$$

- 3. Let's recall the CRHF security game for a hash function (Gen, H):
 - (a) The challenger samples a key $s \leftarrow \text{Gen}(1^n)$ and sends s to the adversary.
 - (b) The adversary outputs two values x, x' in the domain of H^s .
 - (c) The adversary wins the game if $x \neq x'$ and $H^s(x) = H^s(x')$, and they lose otherwise.
- 4. Assume toward contradiction that H_{comp} is insecure. Then there is an adversary \mathcal{A} for H_{comp} 's security game that finds a collision in H_{comp} with non-negligible probability.

Next, we will construct adversaries \mathcal{B}_1 and \mathcal{B}_2 that try to find collisions in H_1 and H_2 , respectively.

 $\underline{\mathcal{B}_{1:}}$

- (a) The challenger in the security game for H_1 samples a key $s_1 \leftarrow \text{Gen}_1(1^n)$ and sends s_1 to \mathcal{B}_1 .
- (b) \mathcal{B}_1 samples $s_2 \leftarrow \mathsf{Gen}_2(1^n)$ and sets $s = (s_1, s_2)$.
- (c) \mathcal{B}_1 runs $\mathcal{A}(s)$, which outputs two values $x, x' \in \mathcal{X}$.
- (d) \mathcal{B}_1 runs Collision-Finder(s, x, x') to try to find a collision in $H_1^{s_1}$. If successful, \mathcal{B}_1 outputs the collision.

We can also construct an adversary \mathcal{B}_2 for the H_2 security game using an almostidentical construction to \mathcal{B}_1 .

 \mathcal{B}_{2} :

- (a) The challenger in the security game for H_2 samples a key $s_2 \leftarrow \text{Gen}_2(1^n)$ and sends s_2 to \mathcal{B}_2 .
- (b) \mathcal{B}_2 samples $s_1 \leftarrow \mathsf{Gen}_1(1^n)$ and sets $s = (s_1, s_2)$.
- (c) \mathcal{B}_2 runs $\mathcal{A}(s)$, which outputs two values $x, x' \in \mathcal{X}$.
- (d) \mathcal{B}_2 runs Collision-Finder(s, x, x') to try to find a collision in $H_2^{s_2}$. If successful, \mathcal{B}_2 outputs the collision.
- 5. Note that \mathcal{B}_1 and \mathcal{B}_2 correctly simulate the H_{comp} security game with \mathcal{A} as the adversary. Therefore, when \mathcal{B}_1 or \mathcal{B}_2 runs \mathcal{A} , \mathcal{A} will output a collision in H_{comp} with non-negligible probability.
- 6. Next,

 $\Pr[\mathcal{A} \text{ wins the } H_{\text{comp}} \text{ sec. game}] = \Pr[\mathcal{B}_1 \text{ wins the } H_1 \text{ sec. game}] + \Pr[\mathcal{B}_2 \text{ wins the } H_2 \text{ sec. game}]$

This is because whenever \mathcal{A} outputs a collision in H^s_{comp} , it yields either a collision in $H^{s_1}_1$ or a collision in $H^{s_2}_2$.

7. Since $\Pr[\mathcal{A} \text{ wins the } H_{\text{comp}} \text{ sec. game}]$ is non-negligible, then either $\Pr[\mathcal{B}_1 \text{ wins the } H_1 \text{ sec. game}]$ is non-negligible or $\Pr[\mathcal{B}_2 \text{ wins the } H_2 \text{ sec. game}]$ is non-negligible. That means that

either H_1 is insecure or H_2 is insecure¹. In either case, this is a contradiction because H_1 and H_2 are secure CRHFs. Therefore, our initial assumption was false, and in fact, H_{comp} is also a secure CRHF.

¹We can't say which one of the hash functions is insecure; it depends on the particular algorithm for \mathcal{A} .