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CS 171: Discussion Section 8 (March 11)

1 CPA-Secure Public-Key Encryption From Two-Round Key
Exchange

Question: Given a two-round key-exchange protocol with keyspace K = {0, 1}n, construct
a CPA-secure public-key encryption (PKE) scheme for n-bit messages and prove its security.
Do not use any other cryptographic primitive.

1.1 Two-Round Key Exchange

A two-round key-exchange protocol comprises three randomized algorithms (P1, P2, P3) and
has the following form:

1. Alice computes (msg1, st)← P1(1
n) and sends msg1 to Bob.

2. Bob computes (msg2, k)← P2(msg1). Then he sends msg2 to Alice and outputs k.

3. Alice computes k ← P3(st,msg2) and outputs k.

1.1.1 Definition of Security

We will define security for key exchange below. Our definition of security is equivalent to the
one given in lecture 13, slide 26.

Consider the following security game.

GB,Π(n, b):

1. The challenger executes the key exchange protocol Π to produce (msg1,msg2, k).

2. If b = 0, the challenger sets k̂ = k. If b = 1, they sample k̂ ← K. Then the adversary
B is given (msg1,msg2, k̂).

3. B outputs a bit b′, which is the output of the game as well.

We say that a key-exchange protocol is secure if for all PPT adversaries B, there exists
a negligible function negl such that:∣∣Pr[GB,Π(n, 0)→ 1]− Pr[GB,Π(n, 1)→ 1]

∣∣ = negl(n)

1.2 Definition of CPA security for PKE

Let’s write the definition of CPA security for public-key encryption. It will resemble the
definition we’ve seen previously for secret-key encryption.

Given an adversary A, define the following game:

PubKA,Π(n):
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1. The challenger samples the keys (pk, sk) ← Gen(1n). Then they give (1n, pk) to the
adversary A.

2. A outputs a pair of messages (m0,m1) such that |m0| = |m1|.

3. The challenger samples b← {0, 1} and computes the challenge ciphertext:

c← Enc(pk,mb) (1.1)

Then they give c to A.

4. A outputs a bit b′. The output of the experiment is 1 if b = b′ and 0 otherwise.

A public-key encryption scheme is CPA-secure if for any probabilistic polynomial-time
adversary A, there is a negligible function negl such that:

Pr[PubKA,Π(n)→ 1] =
1

2
+ negl(n)

Solution

1.3 Construction of a PKE Scheme:

1. Gen(1n): Compute (msg1, st)← P1(1
n). Output pk = msg1 and sk = st.

2. Enc(pk,m): Compute (msg2, k)← P2(msg1). Output c = (msg2, k ⊕m).

3. Dec(sk, c): parse c as (msg2, c
′); compute k ← P3(st,msg2) and output k ⊕ c′.

Theorem 1.1. The construction of PKE given above is CPA-secure.

Proof. Given a PPT adversary A, let us compare the following hybrids:

• H0: Is PubKA,Π(n), with the PKE construction given in section 1.3:

1. The challenger computes (pk, sk) = (msg1, st)← P1(1
n).

2. The adversary A is given input 1n and msg1. Then A outputs a pair of messages
(m0,m1) such that |m0| = |m1|.

3. The challenger computes the challenge ciphertext :

b← {0, 1}
(msg2, k)← P2(msg1)

c = (msg2, k ⊕mb)

Then they give c to A.
4. A outputs a bit b′. The output of the hybrid is 1 if b = b′ and 0 otherwise.

• H1: Is the same as H0, except the challenge ciphertext is computed as follows:

b← {0, 1}
r ← {0, 1}n

(msg2, k)← P2(msg1)

c = (msg2, r ⊕mb)
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Lemma 1.2.
∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣ ≤ negl(n)

Proof. This follows from the security of the key-exchange protocol.

1. Overview: Assume toward contradiction that there’s an adversaryA such that
∣∣∣Pr[H0 →

1]−Pr[H1 → 1]
∣∣∣ is non-negligible. Then we’ll construct an adversary B that can break

the security of the key-exchange protocol with non-negligible advantage.

2. Construction of B:

(a) B receives from the key exchange challenger the transcript (msg1,msg2) and a
string k̂ that could be k or a random string r ← {0, 1}n.

(b) B sends (1n,msg1) to A. When A outputs (m0,m1), B samples b ← {0, 1} and
sends to A:

(msg2, k̂ ⊕mb)

(c) Finally, A outputs a bit b′. B checks whether b = b′. If so, B outputs 1, and if
not, B outputs 0.

3. Analysis: When k̂ = k, B correctly simulates H0. When k̂ = r ← {0, 1}n, B correctly
simulates H1. Since A distinguishes between H0 and H1 with non-negligible advantage,
B distinguishes whether k̂ = k or k̂ = r with the same advantage. More formally:

Pr[GB,Π(n, 0)→ 1] = Pr[H0 → 1]

Pr[GB,Π(n, 1)→ 1] = Pr[H1 → 1]∣∣Pr[GB,Π(n, 0)→ 1]− Pr[GB,Π(n, 1)→ 1]
∣∣ = ∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣
= non-negl(n)

Therefore, B breaks the security of the key-exchange protocol. This is a contradiction
because we know the key-exchange protocol is secure. Therefore, our initial assumption

was false, and in fact
∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣ is negligible.

Lemma 1.3. Pr[H1 → 1] = 1
2

Proof. This follows from the security of the one-time pad.
Fix any values of (msg1, st,m0,m1,msg2, k). Then over the randomness of r, the variable

r ⊕m0 is uniformly random. So is r ⊕m1. Therefore, r ⊕mb is independent of b and the
other variables (msg1, st,m0,m1,msg2, k).

The output distribution of A depends only on the variables (msg1,m0,m1,msg2) and the
distribution of r ⊕mb. Therefore, the output distribution of A is independent of b, so:

Pr[H1 → 1] =
1

2
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The previous lemmas imply that

Pr[H0 → 1] ≤
∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣+ Pr[H1 → 1]

≤ 1

2
+ negl(n)

Therefore, the construction in section 1.3 satisfies CPA security.
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2 One-way functions from Pseudorandom Permutations

One-way functions can be constructed from many other cryptographic primitives, including
from pseudorandom permutations.

Let F : {0, 1}n×{0, 1}n → {0, 1}n be a pseudorandom permutation. This can be written
as F (k, x) or equivalently Fk(x), where k is the key. Note that an adversary can compute
F−1k (·) in addition to Fk(·) if they are given the key k.

1. Let x ∈ {0, 1}n, and
let f1(x) = F0n(x)

Show that f1 is not a one-way function.

Solution We will construct a PPT adversary A that breaks the one-wayness of f1.

(a) The OWF challenger samples x ← {0, 1}n, computes y = f1(x) = F0n(x), and
gives A the input (1n, y).

(b) A computes x′ = F−10n (y), and outputs x′.

It holds that f1(x
′) = F0n(F

−1
0n (y)) = y, so A wins the OWF security game with

probability 1. This breaks the OWF security of f1.

2. Let x = (x0, x1) ∈ {0, 1}n × {0, 1}n, and

let f2(x) = Fx0(x1)

Show that f2 is not a one-way function.

Solution We will construct a PPT adversary A that breaks the one-wayness of f2.

(a) The OWF challenger samples (x0, x1)← {0, 1}n×{0, 1}n, computes y = f2(x0, x1) =
Fx0(x1), and gives A the input (1n, y).

(b) A picks x′0 = 0n and computes

x′1 = F−1
x′
0
(y)

Then A outputs x′ := (x′0, x
′
1).

It holds that f2(x
′) = Fx′

0
(F−1

x′
0
(y)) = y, so A wins the OWF security game with

probability 1. This breaks the OWF security of f2.

3. Extra problem: Let x ∈ {0, 1}n, and

let f3(x) = Fx(0
n)||Fx(1

n)

Show that f3 is a one-way function.

Solution
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(a) We claim that any PRG that maps {0, 1}n → {0, 1}2n is also a OWF. We will
prove a claim essentially the same as this one on HW 7, Q1. Next, to prove that
f3 is a OWF, we just need to prove that f3 is a PRG.

(b) Assume toward contradiction that f3 is not a PRG. Then there is an adversary
A that can distinguish f3(x) (where x ← {0, 1}n) from y ← {0, 1}2n with non-
negligible advantage. Then we will use A to construct an adversary B that breaks
the PRP security of F .
Construction of B:
i. The PRP challenger gives B query access to a function, either Fx(·), where

x← {0, 1}n, or R(·), where R is a truly random permutation.

ii. B queries the function on 0n and 1n to get outputs y0 and y1 respectively. B
runs A on inputs (1n, y0||y1). A will output a bit b′, which B outputs as well.

(c) Pseudorandom Case: If B gets query access to Fx(·), then y0||y1 = f3(x). Then:

Pr
x←{0,1}n

[BFx(·) → 1] = Pr
x←{0,1}n

[A(f3(x))→ 1]

(d) Truly Random Case: If B gets query access to a truly random permutation R(·),
then (y0||y1) is sampled uniformly at random from all 2n-bit strings such that
the first n bits do not equal the second n bits. The distribution of (y0||y1) has
negligible statistical distance from the uniform distribution over {0, 1}2n. This is
because

Pr
(y0||y1)←{0,1}2n

[y0 = y1] = 2−n = negl(n)

Therefore, ∣∣∣Pr
R
[BR(·) → 1]− Pr

y0||y1←{0,1}n
[A(y0||y1)→ 1]

∣∣∣ ≤ 2−n

(e) In summary:∣∣∣Pr
x
[BFx(·) → 1]− Pr

R
[BR(·) → 1]

∣∣∣ ≥ ∣∣∣ Pr
x←{0,1}n

[A(f3(x))→ 1]− Pr
y0||y1←{0,1}n

[A(y0||y1)→ 1]
∣∣∣− 2−n

= non-negl(n)− negl(n) = non-negl(n)

This means that B breaks the PRP security of F . But that’s a contradiction
because we know that F is a secure PRP. Therefore, the initial assumption was
false, and in fact f3 is a PRG.
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