CS 171: Discussion Section 8 (March 11)

1 CPA-Secure Public-Key Encryption From Two-Round Key Exchange

Question: Given a two-round key-exchange protocol with keyspace $\mathcal{K}=\{0,1\}^{n}$, construct a CPA-secure public-key encryption (PKE) scheme for n-bit messages and prove its security. Do not use any other cryptographic primitive.

1.1 Two-Round Key Exchange

A two-round key-exchange protocol comprises three randomized algorithms $\left(P_{1}, P_{2}, P_{3}\right)$ and has the following form:

1. Alice computes $\left(\operatorname{msg}_{1}, \mathrm{st}\right) \leftarrow P_{1}\left(1^{n}\right)$ and sends msg_{1} to Bob.
2. Bob computes $\left(\operatorname{msg}_{2}, k\right) \leftarrow P_{2}\left(\operatorname{msg}_{1}\right)$. Then he sends msg_{2} to Alice and outputs k.
3. Alice computes $k \leftarrow P_{3}\left(\mathrm{st}, \mathrm{msg}_{2}\right)$ and outputs k.

1.1.1 Definition of Security

We will define security for key exchange below. Our definition of security is equivalent to the one given in lecture 13 , slide 26 .

Consider the following security game.
$\underline{G_{\mathcal{B}, \Pi}(n, b):}$

1. The challenger executes the key exchange protocol Π to produce $\left(\operatorname{msg}_{1}, \operatorname{msg}_{2}, k\right)$.
2. If $b=0$, the challenger sets $\hat{k}=k$. If $b=1$, they sample $\hat{k} \leftarrow \mathcal{K}$. Then the adversary \mathcal{B} is given $\left(\mathrm{msg}_{1}, \mathrm{msg}_{2}, \hat{k}\right)$.
3. \mathcal{B} outputs a bit b^{\prime}, which is the output of the game as well.

We say that a key-exchange protocol is secure if for all PPT adversaries \mathcal{B}, there exists a negligible function negl such that:

$$
\left|\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 0) \rightarrow 1\right]-\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 1) \rightarrow 1\right]\right|=\operatorname{neg}(n)
$$

1.2 Definition of CPA security for PKE

Let's write the definition of CPA security for public-key encryption. It will resemble the definition we've seen previously for secret-key encryption.

Given an adversary \mathcal{A}, define the following game:

PubK $_{\mathcal{A}, \Pi}(n):$

1. The challenger samples the keys (pk, sk) $\leftarrow \operatorname{Gen}\left(1^{n}\right)$. Then they give $\left(1^{n}, \mathrm{pk}\right)$ to the adversary \mathcal{A}.
2. \mathcal{A} outputs a pair of messages $\left(m_{0}, m_{1}\right)$ such that $\left|m_{0}\right|=\left|m_{1}\right|$.
3. The challenger samples $b \leftarrow\{0,1\}$ and computes the challenge ciphertext:

$$
\begin{equation*}
c \leftarrow \operatorname{Enc}\left(\mathrm{pk}, m_{b}\right) \tag{1.1}
\end{equation*}
$$

Then they give c to \mathcal{A}.
4. \mathcal{A} outputs a bit b^{\prime}. The output of the experiment is 1 if $b=b^{\prime}$ and 0 otherwise.

A public-key encryption scheme is CPA-secure if for any probabilistic polynomial-time adversary \mathcal{A}, there is a negligible function negl such that:

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathcal{A}, \Pi}(n) \rightarrow 1\right]=\frac{1}{2}+\operatorname{negl}(n)
$$

Solution

1.3 Construction of a PKE Scheme:

1. Gen $\left(1^{n}\right)$: Compute $\left(\mathrm{msg}_{1}, \mathrm{st}\right) \leftarrow P_{1}\left(1^{n}\right)$. Output $\mathrm{pk}=\mathrm{msg}_{1}$ and $\mathrm{sk}=\mathrm{st}$.
2. Enc (pk, m) : Compute $\left(\mathrm{msg}_{2}, k\right) \leftarrow P_{2}\left(\mathrm{msg}_{1}\right)$. Output $c=\left(\mathrm{msg}_{2}, k \oplus m\right)$.
3. Dec (sk, c) : parse c as $\left(\mathrm{msg}_{2}, c^{\prime}\right)$; compute $k \leftarrow P_{3}\left(\mathrm{st}, \mathrm{msg}_{2}\right)$ and output $k \oplus c^{\prime}$.

Theorem 1.1. The construction of PKE given above is CPA-secure.
Proof. Given a PPT adversary \mathcal{A}, let us compare the following hybrids:

- \mathcal{H}_{0} : Is $\operatorname{PubK}_{\mathcal{A}, \Pi}(n)$, with the PKE construction given in section 1.3:

1. The challenger computes $(\mathrm{pk}, \mathrm{sk})=\left(\mathrm{msg}_{1}, \mathrm{st}\right) \leftarrow P_{1}\left(1^{n}\right)$.
2. The adversary \mathcal{A} is given input 1^{n} and msg $_{1}$. Then \mathcal{A} outputs a pair of messages (m_{0}, m_{1}) such that $\left|m_{0}\right|=\left|m_{1}\right|$.
3. The challenger computes the challenge ciphertext:

$$
\begin{aligned}
b & \leftarrow\{0,1\} \\
\left(\mathrm{msg}_{2}, k\right) & \leftarrow P_{2}\left(\mathrm{msg}_{1}\right) \\
c & =\left(\mathrm{msg}_{2}, k \oplus m_{b}\right)
\end{aligned}
$$

Then they give c to \mathcal{A}.
4. \mathcal{A} outputs a bit b^{\prime}. The output of the hybrid is 1 if $b=b^{\prime}$ and 0 otherwise.

- \mathcal{H}_{1} : Is the same as \mathcal{H}_{0}, except the challenge ciphertext is computed as follows:

$$
\begin{aligned}
b & \leftarrow\{0,1\} \\
r & \leftarrow\{0,1\}^{n} \\
\left(\operatorname{msg}_{2}, k\right) & \leftarrow P_{2}\left(\operatorname{msg}_{1}\right) \\
c & =\left(\operatorname{msg}_{2}, r \oplus m_{b}\right)
\end{aligned}
$$

Lemma 1.2. $\left|\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]\right| \leq \operatorname{negl}(n)$
Proof. This follows from the security of the key-exchange protocol.

1. Overview: Assume toward contradiction that there's an adversary \mathcal{A} such that $\mid \operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow\right.$ $1]-\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]$ is non-negligible. Then we'll construct an adversary \mathcal{B} that can break the security of the key-exchange protocol with non-negligible advantage.
2. Construction of \mathcal{B} :
(a) \mathcal{B} receives from the key exchange challenger the transcript $\left(\mathrm{msg}_{1}, \mathrm{msg}_{2}\right)$ and a string \hat{k} that could be k or a random string $r \leftarrow\{0,1\}^{n}$.
(b) \mathcal{B} sends $\left(1^{n}\right.$, msg $\left._{1}\right)$ to \mathcal{A}. When \mathcal{A} outputs $\left(m_{0}, m_{1}\right), \mathcal{B}$ samples $b \leftarrow\{0,1\}$ and sends to \mathcal{A} :

$$
\left(\operatorname{msg}_{2}, \hat{k} \oplus m_{b}\right)
$$

(c) Finally, \mathcal{A} outputs a bit b^{\prime}. \mathcal{B} checks whether $b=b^{\prime}$. If so, \mathcal{B} outputs 1 , and if not, \mathcal{B} outputs 0 .
3. Analysis: When $\hat{k}=k, \mathcal{B}$ correctly simulates \mathcal{H}_{0}. When $\hat{k}=r \leftarrow\{0,1\}^{n}, \mathcal{B}$ correctly simulates \mathcal{H}_{1}. Since \mathcal{A} distinguishes between \mathcal{H}_{0} and \mathcal{H}_{1} with non-negligible advantage, \mathcal{B} distinguishes whether $\hat{k}=k$ or $\hat{k}=r$ with the same advantage. More formally:

$$
\begin{aligned}
\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 0) \rightarrow 1\right] & =\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right] \\
\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 1) \rightarrow 1\right] & =\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right] \\
\left|\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 0) \rightarrow 1\right]-\operatorname{Pr}\left[G_{\mathcal{B}, \Pi}(n, 1) \rightarrow 1\right]\right| & =\left|\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]\right| \\
& =\operatorname{non-negl}(n)
\end{aligned}
$$

Therefore, \mathcal{B} breaks the security of the key-exchange protocol. This is a contradiction because we know the key-exchange protocol is secure. Therefore, our initial assumption was false, and in fact $\left|\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]\right|$ is negligible.

Lemma 1.3. $\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]=\frac{1}{2}$
Proof. This follows from the security of the one-time pad.
Fix any values of $\left(\mathrm{msg}_{1}, \mathrm{st}, m_{0}, m_{1}, \mathrm{msg}_{2}, k\right)$. Then over the randomness of r, the variable $r \oplus m_{0}$ is uniformly random. So is $r \oplus m_{1}$. Therefore, $r \oplus m_{b}$ is independent of b and the other variables $\left(\mathrm{msg}_{1}, \mathrm{st}, m_{0}, m_{1}, \mathrm{msg}_{2}, k\right)$.

The output distribution of \mathcal{A} depends only on the variables ($\mathrm{msg}_{1}, m_{0}, m_{1}, \mathrm{msg}_{2}$) and the distribution of $r \oplus m_{b}$. Therefore, the output distribution of \mathcal{A} is independent of b, so:

$$
\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]=\frac{1}{2}
$$

The previous lemmas imply that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right] \leq\left|\operatorname{Pr}\left[\mathcal{H}_{0} \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right]\right| & +\operatorname{Pr}\left[\mathcal{H}_{1} \rightarrow 1\right] \\
& \leq \frac{1}{2}+\operatorname{negl}(n)
\end{aligned}
$$

Therefore, the construction in section 1.3 satisfies CPA security.

2 One-way functions from Pseudorandom Permutations

One-way functions can be constructed from many other cryptographic primitives, including from pseudorandom permutations.

Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a pseudorandom permutation. This can be written as $F(k, x)$ or equivalently $F_{k}(x)$, where k is the key. Note that an adversary can compute $F_{k}^{-1}(\cdot)$ in addition to $F_{k}(\cdot)$ if they are given the key k.

1. Let $x \in\{0,1\}^{n}$, and

$$
\text { let } f_{1}(x)=F_{0^{n}}(x)
$$

Show that f_{1} is not a one-way function.
Solution We will construct a PPT adversary \mathcal{A} that breaks the one-wayness of f_{1}.
(a) The OWF challenger samples $x \leftarrow\{0,1\}^{n}$, computes $y=f_{1}(x)=F_{0^{n}}(x)$, and gives \mathcal{A} the input $\left(1^{n}, y\right)$.
(b) \mathcal{A} computes $x^{\prime}=F_{0^{n}}^{-1}(y)$, and outputs x^{\prime}.

It holds that $f_{1}\left(x^{\prime}\right)=F_{0^{n}}\left(F_{0^{n}}^{-1}(y)\right)=y$, so \mathcal{A} wins the OWF security game with probability 1. This breaks the OWF security of f_{1}.
2. Let $x=\left(x_{0}, x_{1}\right) \in\{0,1\}^{n} \times\{0,1\}^{n}$, and

$$
\text { let } f_{2}(x)=F_{x_{0}}\left(x_{1}\right)
$$

Show that f_{2} is not a one-way function.
Solution We will construct a PPT adversary \mathcal{A} that breaks the one-wayness of f_{2}.
(a) The OWF challenger samples $\left(x_{0}, x_{1}\right) \leftarrow\{0,1\}^{n} \times\{0,1\}^{n}$, computes $y=f_{2}\left(x_{0}, x_{1}\right)=$ $F_{x_{0}}\left(x_{1}\right)$, and gives \mathcal{A} the input $\left(1^{n}, y\right)$.
(b) \mathcal{A} picks $x_{0}^{\prime}=0^{n}$ and computes

$$
x_{1}^{\prime}=F_{x_{0}^{\prime}}^{-1}(y)
$$

Then \mathcal{A} outputs $x^{\prime}:=\left(x_{0}^{\prime}, x_{1}^{\prime}\right)$.
It holds that $f_{2}\left(x^{\prime}\right)=F_{x_{0}^{\prime}}\left(F_{x_{0}^{\prime}}^{-1}(y)\right)=y$, so \mathcal{A} wins the OWF security game with probability 1. This breaks the OWF security of f_{2}.
3. Extra problem: Let $x \in\{0,1\}^{n}$, and

$$
\text { let } f_{3}(x)=F_{x}\left(0^{n}\right) \| F_{x}\left(1^{n}\right)
$$

Show that f_{3} is a one-way function.

Solution

(a) We claim that any PRG that maps $\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is also a OWF. We will prove a claim essentially the same as this one on HW 7, Q1. Next, to prove that f_{3} is a OWF, we just need to prove that f_{3} is a PRG.
(b) Assume toward contradiction that f_{3} is not a PRG. Then there is an adversary \mathcal{A} that can distinguish $f_{3}(x)$ (where $x \leftarrow\{0,1\}^{n}$) from $y \leftarrow\{0,1\}^{2 n}$ with nonnegligible advantage. Then we will use \mathcal{A} to construct an adversary \mathcal{B} that breaks the PRP security of F.
Construction of \mathcal{B} :
i. The PRP challenger gives \mathcal{B} query access to a function, either $F_{x}(\cdot)$, where $x \leftarrow\{0,1\}^{n}$, or $R(\cdot)$, where R is a truly random permutation.
ii. \mathcal{B} queries the function on 0^{n} and 1^{n} to get outputs y_{0} and y_{1} respectively. \mathcal{B} runs \mathcal{A} on inputs $\left(1^{n}, y_{0} \| y_{1}\right)$. \mathcal{A} will output a bit b^{\prime}, which \mathcal{B} outputs as well.
(c) Pseudorandom Case: If \mathcal{B} gets query access to $F_{x}(\cdot)$, then $y_{0} \| y_{1}=f_{3}(x)$. Then:

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[B^{F_{x}(\cdot)} \rightarrow 1\right]=\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{A}\left(f_{3}(x)\right) \rightarrow 1\right]
$$

(d) Truly Random Case: If \mathcal{B} gets query access to a truly random permutation $R(\cdot)$, then $\left(y_{0} \| y_{1}\right)$ is sampled uniformly at random from all $2 n$-bit strings such that the first n bits do not equal the second n bits. The distribution of $\left(y_{0} \| y_{1}\right)$ has negligible statistical distance from the uniform distribution over $\{0,1\}^{2 n}$. This is because

$$
\underset{\left(y_{0} \| y_{1}\right) \leftarrow\{0,1\}^{2 n}}{\operatorname{Pr}}\left[y_{0}=y_{1}\right]=2^{-n}=\operatorname{neg}(n)
$$

Therefore,

$$
\left|\operatorname{Pr}_{R}\left[\mathcal{B}^{R(\cdot)} \rightarrow 1\right]-\underset{y_{0} \| y_{1} \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}\left[\mathcal{A}\left(y_{0} \| y_{1}\right) \rightarrow 1\right]\right| \leq 2^{-n}
$$

(e) In summary:

$$
\begin{aligned}
\left|\operatorname{Pr}_{x}\left[B^{F_{x}(\cdot)} \rightarrow 1\right]-\operatorname{Pr}_{R}\left[\mathcal{B}^{R(\cdot)} \rightarrow 1\right]\right| & \geq\left|\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}\left[\mathcal{A}\left(f_{3}(x)\right) \rightarrow 1\right]-\underset{y_{0} \| y_{1} \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}\left[\mathcal{A}\left(y_{0} \| y_{1}\right) \rightarrow 1\right]\right|-2^{-n} \\
& =\operatorname{non-negl}(n)-\operatorname{negl}(n)=\operatorname{non-negl}(n)
\end{aligned}
$$

This means that \mathcal{B} breaks the PRP security of F. But that's a contradiction because we know that F is a secure PRP. Therefore, the initial assumption was false, and in fact f_{3} is a PRG.

