
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 9 (April 1)

1 Group Operations

Definitions: Let (G, q, g)← G(1n) be the description of a cyclic group for which the discrete
log problem is hard. |G| = q ≈ 2n, and g ∈ G is a generator of G. Next, let h ∈ G be an
arbitrary group element, and sample a, x, y ← Zq independently and uniformly.

Question: For each of the following tasks, describe how it can be performed efficiently (in
poly(n) time) or prove that it cannot be performed efficiently. For each task, assume that
you are given (G, q, g), the parameters of the group.

1. Given x, g, compute gx.

2. Sample a uniformly random element of G.

3. Given h, compute h−1.

4. Given a, y, g, gx, compute ga·x−y.

5. Given a, ga·x, compute a · x.

Solution

1. This can be done efficiently. The naive algorithm requires x = O(q) multiplications:
gx = Πi∈[x]g. However, there is a more-efficient algorithm based on repeated squaring
that requires O(log q) multiplications.

(a) Repeated Squaring Algorithm: Compute g(2
i) for every i ∈ {0, . . . , log(q) − 1} as

follows:

i. g1 = g

ii. g2 = g1 · g1

iii. g4 = g2 · g2

iv. g8 = g4 · g4

v. Etc.

This requires log(q)− 1 multiplications in total.

(b) Then to compute gx: write x in binary as x⃗ ∈ {0, 1}log q. Let x⃗0 be the lowest-order
bit, and let x⃗log(q)−1 be the highest-order bit. Then compute

gx =
∏

i:⃗xi=1

g(2
i)

This requires O(log q) multiplications.

2. This can be done efficiently. Sample x← Zq and compute h = gx.

3. This can be done efficiently. Compute hq−1 (using repeated squaring). Note that
hq−1 = h−1 because h · hq−1 = hq−1 · h = hq = 1.

Here, we used the fact that hq = 1.

1



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Note: Cyclic groups have the following useful property:

gx = gx mod q

for any g ∈ G and any x ∈ Z, where q = |G|.

4. This can be done efficiently.

(a) Compute ga·x = (gx)a using repeated squaring.

(b) Compute g−y.

(c) Compute ga·x−y = ga·x · g−y

5. No efficient algorithm can succeed at this task with non-negligible probability. This
follows from the hardness of discrete log.

Proof.

(a) Key Ideas: We can turn this task into the discrete log problem mainly by renaming
our variables. We will also need the fact that a is independent of a · x (due to the
randomness of x), so a gives no useful information to the discrete log adversary.

(b) Let y = a · x, and let h = ga·x. Since a and x are independent and uniformly
random, then a and h are statistically close to independent and uniformly random.

(c) Now with this new notation, the problem that A solves is the following:
Modified Discrete Log Game:

i. The challenger samples (G, q, g)← G(1n). Then they sample a← Zq. If a = 0,
then h = 1. Otherwise, sample h← G. Finally, they give the adversary A the
variables (G, q, g, h, a).

ii. A outputs y′ ∈ Zq.

iii. The output of the game is 1 if h = gy
′
, and the output is 0 otherwise.

(d) Reduction to discrete log: We will show that if there exists a PPT adversary A for
which the Modified Discrete Log Game outputs 1 with non-negligible probability,
then we can construct an adversary B that wins the Discrete Log Game with non-
negligible probability. This is a contradiction because discrete log is hard relative
to G, so in fact, A cannot win the Modified Discrete Log Game with greater than
negligible probability.

(e) Construction of B (the discrete log adversary):

i. The discrete log challenger samples (G, q, g)← G(1n) and h← G. Then they
give B the variables (G, q, g, h).

ii. B samples a← Zq and runs A(G, q, g, h, a) until A outputs y′. B also outputs
y′.

(f) B simulates the Modified Discrete Log Game up to negligible statistical error. This
is because in theModified Discrete Log Game, a is statistically close to independent
of (G, q, g, h), and h is statistically close to uniformly random.

That means with non-negligible probability, A and B will output a y′ such that
h = gy

′
. This is the answer that B needs to win the Discrete Log Game, so B wins

the Discrete Log Game with non-negligible probability.

2



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

3



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Another PKE Construction from DDH

Consider the following public-key encryption scheme, which is based on El Gamal encryption.

1. Gen(1n): Sample (G, q, g)← G(1n) and x← Zq. Then compute h = gx. Next,

let pk = (G, q, g, h)

sk = (G, q, g, x)

2. Enc(pk,m): Let m ∈ {0, 1}. First, sample y ← Zq. Next:

(a) If m = 0, compute and output the following ciphertext:

c = (c1, c2) = (gy, hy)

(b) If m = 1, then sample z ← Zq and output the following ciphertext:

c = (c1, c2) = (gy, gz)

3. Dec(sk, c): TBD

Questions:

1. Fill in the algorithm Dec(sk, c) so that the scheme is efficient and correct, up to negligible
error.

2. Prove that this encryption scheme is CPA-secure if DDH is hard.

Solution

Part 1: Decryption

1. Dec(sk, c): Check whether cx1 = c2. If so output 0, and if not output 1.

2. This encryption scheme is clearly efficient.

3. Now we will show correctness:

Claim 2.1. For any (pk, sk,m),

Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1− negl(n)

where the probability is over the randomness of Enc.

Proof. First, if c = Enc(pk, 0), then

cx1 = (gy)x = gx·y = (gx)y = hy = c2

Then Dec(sk, c) will output 0.

4



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Second, if c = Enc(pk, 1), then c2 = gz. Decryption will be incorrect only if cx1 = c2. In
this case, gx·y = gz, so x · y = z mod q. Next, since z is uniformly random,

Pr
z
[x · y = z mod q] =

1

q
= negl(n)

In summary, over the randomness of Enc:

Pr[Dec(sk,Enc(pk, 1)) = 0] = negl(n)

Part 2: CPA security

Claim 2.2. If DDH is hard relative to G, then the encryption scheme defined above satisfies
CPA security.

Proof.

1. Key ideas: An adversary that tries to break DDH is given (gx, gy, gz) and must distin-
guish whether z = x · y mod q or z ← Zq. These two cases correspond to encryptions
of 0 and 1 respectively. If there were a CPA adversary that could tell whether the
challenge ciphertext encrypts 0 or 1, then they could be used to break DDH.

2. Overview: Assume toward contradiction that there’s a PPT adversary A that breaks the
CPA security of the encryption scheme. Then we will use A to construct a PPT adver-
sary B that wins the DDH game with non-negligible advantage. This is a contradiction
because no PPT adversary can win the DDH game with non-negligible advantage.
Therefore, our assumption was false and in fact, the encryption scheme is CPA-secure.

3. Let us require that A’s challenge messages are always m0 = 0 and m1 = 1. This is
without loss of generality. The intuition is that there are only two possible messages
{0, 1} to choose from.

4. Construction of B (the DDH adversary):

(a) The DDH challenger samples (G, q, g)← G(1n), and also samples x, y ← Zq inde-
pendently. Then they either set z = x · y mod q or sample z ← Zq. Finally, they
give B the values (G, q, g, gx, gy, gz).

(b) B will simulate the CPA security game. They set pk = (G, q, g, gx). Then they
run the CPA adversary A on input pk.

(c) When A outputs two challenge messages m0 = 0 and m1 = 1, B ignores them and
returns c∗ = (gy, gz).

(d) When A outputs a bit b′, B outputs b′ as well.

5. For any given b ∈ {0, 1}, let CPA(A, b) be the CPA game in which the challenge cipher-
text is always an encryption of mb, and the output of the game is whatever bit b′ that
A outputs.

5



CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

Since A breaks CPA security,∣∣Pr[CPA(A, 0)→ 1]− Pr[CPA(A, 1)→ 1]
∣∣ ≥ non-negl(n)

Furthermore, when the DDH challenger sets z = x · y mod q, B ends up simulat-
ing CPA(A, 0), and when the DDH challenge samples z ← Zq, B ends up simulating
CPA(A, 1). Therefore, B distinguishes these two cases with non-negligible advantage.

6


