CS 171: Discussion Section 9 (April 1)

1 Group Operations

Definitions: Let $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$ be the description of a cyclic group for which the discrete \log problem is hard. $|\mathbb{G}|=q \approx 2^{n}$, and $g \in \mathbb{G}$ is a generator of \mathbb{G}. Next, let $h \in \mathbb{G}$ be an arbitrary group element, and sample $a, x, y \leftarrow \mathbb{Z}_{q}$ independently and uniformly.

Question: For each of the following tasks, describe how it can be performed efficiently (in $\operatorname{poly}(n)$ time) or prove that it cannot be performed efficiently. For each task, assume that you are given (\mathbb{G}, q, g), the parameters of the group.

1. Given x, g, compute g^{x}.
2. Sample a uniformly random element of \mathbb{G}.
3. Given h, compute h^{-1}.
4. Given a, y, g, g^{x}, compute $g^{a \cdot x-y}$.
5. Given $a, g^{a \cdot x}$, compute $a \cdot x$.

Solution

1. This can be done efficiently. The naive algorithm requires $x=O(q)$ multiplications: $g^{x}=\Pi_{i \in[x]} g$. However, there is a more-efficient algorithm based on repeated squaring that requires $O(\log q)$ multiplications.
(a) Repeated Squaring Algorithm: Compute $g^{\left(2^{i}\right)}$ for every $i \in\{0, \ldots, \log (q)-1\}$ as follows:
i. $g^{1}=g$
ii. $g^{2}=g^{1} \cdot g^{1}$
iii. $g^{4}=g^{2} \cdot g^{2}$
iv. $g^{8}=g^{4} \cdot g^{4}$
v. Etc.

This requires $\log (q)-1$ multiplications in total.
(b) Then to compute g^{x} : write x in binary as $\overrightarrow{\mathrm{x}} \in\{0,1\}^{\log q}$. Let $\overrightarrow{\mathrm{x}}_{0}$ be the lowest-order bit, and let $\vec{x}_{\log (q)-1}$ be the highest-order bit. Then compute

$$
g^{x}=\prod_{i: \vec{x}_{i}=1} g^{\left(2^{i}\right)}
$$

This requires $O(\log q)$ multiplications.
2. This can be done efficiently. Sample $x \leftarrow \mathbb{Z}_{q}$ and compute $h=g^{x}$.
3. This can be done efficiently. Compute h^{q-1} (using repeated squaring). Note that $h^{q-1}=h^{-1}$ because $h \cdot h^{q-1}=h^{q-1} \cdot h=h^{q}=1$.

Here, we used the fact that $h^{q}=1$.

Note: Cyclic groups have the following useful property:

$$
g^{x}=g^{x} \quad \bmod q
$$

for any $g \in \mathbb{G}$ and any $x \in \mathbb{Z}$, where $q=|\mathbb{G}|$.
4. This can be done efficiently.
(a) Compute $g^{a \cdot x}=\left(g^{x}\right)^{a}$ using repeated squaring.
(b) Compute g^{-y}.
(c) Compute $g^{a \cdot x-y}=g^{a \cdot x} \cdot g^{-y}$
5. No efficient algorithm can succeed at this task with non-negligible probability. This follows from the hardness of discrete log.

Proof.

(a) Key Ideas: We can turn this task into the discrete log problem mainly by renaming our variables. We will also need the fact that a is independent of $a \cdot x$ (due to the randomness of x), so a gives no useful information to the discrete log adversary.
(b) Let $y=a \cdot x$, and let $h=g^{a \cdot x}$. Since a and x are independent and uniformly random, then a and h are statistically close to independent and uniformly random.
(c) Now with this new notation, the problem that \mathcal{A} solves is the following: Modified Discrete Log Game:
i. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Then they sample $a \leftarrow \mathbb{Z}_{q}$. If $a=0$, then $h=1$. Otherwise, sample $h \leftarrow \mathbb{G}$. Finally, they give the adversary \mathcal{A} the variables (\mathbb{G}, q, g, h, a).
ii. \mathcal{A} outputs $y^{\prime} \in \mathbb{Z}_{q}$.
iii. The output of the game is 1 if $h=g^{y^{\prime}}$, and the output is 0 otherwise.
(d) Reduction to discrete log: We will show that if there exists a PPT adversary \mathcal{A} for which the Modified Discrete Log Game outputs 1 with non-negligible probability, then we can construct an adversary \mathcal{B} that wins the Discrete Log Game with nonnegligible probability. This is a contradiction because discrete log is hard relative to \mathcal{G}, so in fact, \mathcal{A} cannot win the Modified Discrete Log Game with greater than negligible probability.
(e) Construction of \mathcal{B} (the discrete log adversary):
i. The discrete \log challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$ and $h \leftarrow \mathbb{G}$. Then they give \mathcal{B} the variables (\mathbb{G}, q, g, h).
ii. \mathcal{B} samples $a \leftarrow \mathbb{Z}_{q}$ and runs $\mathcal{A}(\mathbb{G}, q, g, h, a)$ until \mathcal{A} outputs y^{\prime}. \mathcal{B} also outputs y^{\prime}.
(f) \mathcal{B} simulates the Modified Discrete Log Game up to negligible statistical error. This is because in the Modified Discrete Log Game, a is statistically close to independent of (\mathbb{G}, q, g, h), and h is statistically close to uniformly random.
That means with non-negligible probability, \mathcal{A} and \mathcal{B} will output a y^{\prime} such that $h=g^{y^{\prime}}$. This is the answer that \mathcal{B} needs to win the Discrete Log Game, so \mathcal{B} wins the Discrete Log Game with non-negligible probability.

2 Another PKE Construction from DDH

Consider the following public-key encryption scheme, which is based on El Gamal encryption.

1. Gen $\left(1^{n}\right)$: Sample $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$ and $x \leftarrow \mathbb{Z}_{q}$. Then compute $h=g^{x}$. Next,

$$
\begin{aligned}
\text { let } \mathrm{pk} & =(\mathbb{G}, q, g, h) \\
\mathrm{sk} & =(\mathbb{G}, q, g, x)
\end{aligned}
$$

2. Enc (pk, m) : Let $m \in\{0,1\}$. First, sample $y \leftarrow \mathbb{Z}_{q}$. Next:
(a) If $m=0$, compute and output the following ciphertext:

$$
c=\left(c_{1}, c_{2}\right)=\left(g^{y}, h^{y}\right)
$$

(b) If $m=1$, then sample $z \leftarrow \mathbb{Z}_{q}$ and output the following ciphertext:

$$
c=\left(c_{1}, c_{2}\right)=\left(g^{y}, g^{z}\right)
$$

3. $\operatorname{Dec}(\mathrm{sk}, c): \mathrm{TBD}$

Questions:

1. Fill in the algorithm $\operatorname{Dec}(s k, c)$ so that the scheme is efficient and correct, up to negligible error.
2. Prove that this encryption scheme is CPA-secure if DDH is hard.

Solution

Part 1: Decryption

1. $\operatorname{Dec}(\mathrm{sk}, c):$ Check whether $c_{1}^{x}=c_{2}$. If so output 0 , and if not output 1 .
2. This encryption scheme is clearly efficient.
3. Now we will show correctness:

Claim 2.1. For any (pk, sk, m),

$$
\operatorname{Pr}[\operatorname{Dec}(\mathrm{sk}, \operatorname{Enc}(\mathrm{pk}, m))=m] \geq 1-\operatorname{negl}(n)
$$

where the probability is over the randomness of Enc.
Proof. First, if $c=\operatorname{Enc}(\mathrm{pk}, 0)$, then

$$
c_{1}^{x}=\left(g^{y}\right)^{x}=g^{x \cdot y}=\left(g^{x}\right)^{y}=h^{y}=c_{2}
$$

Then $\operatorname{Dec}(\mathrm{sk}, c)$ will output 0 .

Second, if $c=\operatorname{Enc}(\mathrm{pk}, 1)$, then $c_{2}=g^{z}$. Decryption will be incorrect only if $c_{1}^{x}=c_{2}$. In this case, $g^{x \cdot y}=g^{z}$, so $x \cdot y=z \bmod q$. Next, since z is uniformly random,

$$
\operatorname{Pr}_{z}[x \cdot y=z \quad \bmod q]=\frac{1}{q}=\operatorname{neg}(n)
$$

In summary, over the randomness of Enc:

$$
\operatorname{Pr}[\operatorname{Dec}(\mathrm{sk}, \operatorname{Enc}(\mathrm{pk}, 1))=0]=\operatorname{negl}(n)
$$

Part 2: CPA security

Claim 2.2. If $D D H$ is hard relative to \mathcal{G}, then the encryption scheme defined above satisfies $C P A$ security.

Proof.

1. Key ideas: An adversary that tries to break DDH is given $\left(g^{x}, g^{y}, g^{z}\right)$ and must distinguish whether $z=x \cdot y \bmod q$ or $z \leftarrow \mathbb{Z}_{q}$. These two cases correspond to encryptions of 0 and 1 respectively. If there were a CPA adversary that could tell whether the challenge ciphertext encrypts 0 or 1 , then they could be used to break DDH.
2. Overview: Assume toward contradiction that there's a PPT adversary \mathcal{A} that breaks the CPA security of the encryption scheme. Then we will use \mathcal{A} to construct a PPT adversary \mathcal{B} that wins the DDH game with non-negligible advantage. This is a contradiction because no PPT adversary can win the DDH game with non-negligible advantage. Therefore, our assumption was false and in fact, the encryption scheme is CPA-secure.
3. Let us require that \mathcal{A} 's challenge messages are always $m_{0}=0$ and $m_{1}=1$. This is without loss of generality. The intuition is that there are only two possible messages $\{0,1\}$ to choose from.
4. Construction of \mathcal{B} (the DDH adversary):
(a) The DDH challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$, and also samples $x, y \leftarrow \mathbb{Z}_{q}$ independently. Then they either set $z=x \cdot y \bmod q$ or sample $z \leftarrow \mathbb{Z}_{q}$. Finally, they give \mathcal{B} the values $\left(\mathbb{G}, q, g, g^{x}, g^{y}, g^{z}\right)$.
(b) \mathcal{B} will simulate the CPA security game. They set $\mathrm{pk}=\left(\mathbb{G}, q, g, g^{x}\right)$. Then they run the CPA adversary \mathcal{A} on input pk.
(c) When \mathcal{A} outputs two challenge messages $m_{0}=0$ and $m_{1}=1, \mathcal{B}$ ignores them and returns $c^{*}=\left(g^{y}, g^{z}\right)$.
(d) When \mathcal{A} outputs a bit b^{\prime}, \mathcal{B} outputs b^{\prime} as well.
5. For any given $b \in\{0,1\}$, let $\operatorname{CPA}(\mathcal{A}, b)$ be the CPA game in which the challenge ciphertext is always an encryption of m_{b}, and the output of the game is whatever bit b^{\prime} that \mathcal{A} outputs.

Since \mathcal{A} breaks CPA security,

$$
|\operatorname{Pr}[\mathrm{CPA}(\mathcal{A}, 0) \rightarrow 1]-\operatorname{Pr}[\mathrm{CPA}(\mathcal{A}, 1) \rightarrow 1]| \geq \text { non-negl }(n)
$$

Furthermore, when the DDH challenger sets $z=x \cdot y \bmod q, \mathcal{B}$ ends up simulating $\operatorname{CPA}(\mathcal{A}, 0)$, and when the DDH challenge samples $z \leftarrow \mathbb{Z}_{q}, \mathcal{B}$ ends up simulating $\operatorname{CPA}(\mathcal{A}, 1)$. Therefore, \mathcal{B} distinguishes these two cases with non-negligible advantage.

