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Midterm II

Name:

SID:

Do not turn this page until your instructor tells you to do so.

• After the exam starts, write your name on every odd-numbered page. We reserve the right
to deduct points if you do not, and you will not be allowed to do so after time is called.

• For short question, your answers must be written clearly inside the box region. Any answer
outside the box will not be graded. For longer questions, if you run out of space, you must
clearly mention in the space provided for the question if part of your answers is elsewhere.

• Try to answer all questions. Not all parts of a problem are weighted equally. Before you
answer any question, read the problem carefully. Be precise and concise in your answers.

• You may consult at most 20 sheets of notes. Apart from that, you may not look at books,
notes, etc. Calculators, phones, computers, and other electronic devices are NOT permitted.

• There are 11 pages on the exam (counting this one). Notify a proctor immediately if a page
is missing.

• You have 80 minutes: there are 5 questions on this exam worth a total of 100
points.



1 True/False (20 points)

Bubble in the right answer. No explanation needed. +2 points for correct
answer and -1 points for wrong answers! If you leave a question unan-
swered, then there is no penalty. This part will be graded automatically.
Please mark your answer clearly.

1. Let H be a random function mapping {0, 1}n → {0, 1}n/2. Then the probability that there
exists a collision in q distinct queries to H is O(

(
q
2

)
1

2n/2 ).

True

False

Solution: True

2. A pseudorandom generator implies a CCA-secure encryption.

True

False

Solution: True

3. A CCA-secure encryption is also an authenticated encryption.

True

False

Solution: False

4. A pseudorandom function implies a pseudorandom generator.

True

False

Solution: True

5. The Authenticate-then-encrypt approach yields an authenticated encryption scheme.

True

False

Solution: False

6. A CPA-secure encryption scheme implies a pseudorandom function.

True
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Name:

False

Solution: True

7. Two or more rounds are sufficient for the security of Fiestel network.

True

False

Solution: False

8. A 3-round SPN network with 64 bit sub-keys and output key mixing can be broken in time
2192.

True

False

Solution: True

9. One-way functions do not exist if discrete logarithm is solvable in polynomial time.

True

False

Solution: False

10. An unforgeable encryption implies a MAC scheme.

True

False

Solution: True
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2 Hardcore Predicate (20 points)

In this question, we will show the existence of a one-way function where every bit of the input is
not a hardcore predicate.

1. Assume that h : {0, 1}n−1 → {0, 1}n−1 is a one-way function. We now define a function
g : {0, 1}n × {1, 2, 3, . . . , n} → {0, 1}n−1 × {0, 1} × {1, 2, 3, . . . , n} as follows.

g(x, i) = Solution: h(x−i), xi, i

2. Show that g is a one-way function assuming h is a one-way function.

Solution: If g is not one-way, we will break the one-wayness of h. Specifically, given y = h(z)
for a randomly chosen z ∈ {0, 1}n, we will choose a random i ∈ {1, . . . , n} and a bit xi ∈ {0, 1}
and run the adversary A against the one-way ness of g on input (y, xi, i). A gives an output
x′ and we output x′−i.

3. Define the function pk : {0, 1}n → {0, 1} as pk(x) = xk (where xk denotes the k-th bit of
the input). For every k ∈ {1, . . . , n}, we will construct an adversary A who given g(x, i)
can predict the output pk(x) with non-negligible probability. On input (y, b, j) ∈ {0, 1}n−1 ×
{0, 1} × {1, 2, 3, . . . , n}, A does the following.
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Name:

A((y, b, j)) =

 Solution: b if k = j

Solution: Random bit otherwise

4. Pr
(x,i)

$←{0,1}n×{1,2,...,n}
[A(g(x, i)) = pk(x)] = Solution: 1/2 + 1/2n

(We want the exact answer. A generic answer like non-negligible will get you 0 points.)
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3 Unforgeable Encryption (20 points)

In this problem, we will show the existence of an encryption system that is CCA-secure but not
unforgeable.

1. Assume F : {0, 1}2n → {0, 1}2n is a strong pseudorandom permutation. We will consider the
following encryption scheme for messages of length n bits.

• Gen : Sample a random key k for F .

• Enc(k,m) : Sample the randomness r of length n uniformly and output c = Solution: Fk(m∥r)

• Dec(k, c) : Outputm = Solution: The first n bits of F−1k (c)

2. Show that (Gen,Enc,Dec) is a CCA-secure encryption.
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Name:

Solution: This is proved through a hybrid argument. In the first hybrid, we are given oracle
access to Fk, F

−1
k for a randomly chosen k. Using these two oracles, it is easy to simulate the

encryption and the decryption queries. Specifically, for every encryption query on a message
m, we choose an uniform random string r of length n and query Fk on m∥r. For every
decryption query on a ciphertext c, we will query F−1k on c and output the first n bits. The
second hybrid is defined as giving oracle access to a randomly chosen permutation π and
π−1. It follows from the security of strong PRP that these two hybrids are computationally
indistinguishable. Now, in the last hybrid, the message inside the challenge ciphertext is
perfectly hidden since the permutation π is completely random and the probability that in
any query the adversary will be able to guess r used in the challenge ciphertext is 2−n.

3. Show that (Gen,Enc,Dec) is not unforgeable.

Solution: Every string of length 2n is a valid ciphertext and hence, this encryption scheme
is trivially forgeable.
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4 Data Encryption Standard (15 points)

Here is the information about DES taken verbatim from the textbook.

The DES block cipher is a 16-round Feistel network with a block size of 64 bits and a key length
of 56 bits. The same round function f̂ is used in each of the 16 rounds. The round function takes
a 48-bit subkey and, as expected for a (balanced) Feistel network, a 32-bit input (namely, half a
block). The key schedule of DES is used to derive a sequence of 48-bit sub-keys k1, . . . , k16 from
the 56-bit master key. (It is not important for this problem on how exactly is the key schedule
defined).

The DES round function f̂ -sometimes called the DES mangler function - is constructed using the
substitution-permutation paradigm. In more detail, computation of f̂(ki, R) with ki ∈ {0, 1}48 and
R ∈ {0, 1}32 proceeds as follows: first, R is expanded to a 48-bit value R′. This is carried out
by simply duplicating half of the bits of R; we denote this by R′ := E(R) where E is called the
expansion function. Following this, the computation proceeds exactly as a SPN: The expanded
value R′ is XORed with ki, which is also 48 bits long, and the resulting value is divided into 8
blocks, each of which is 6 bits long. Each block is passed through a (different) S-box that takes a
6-bit input and yields a 4-bit output; concatenating the output from 8 S-boxes gives a 32-bit result.
A mixing permutation is then applied to the bits of this result to obtain the final output.

Show that DES has the property that DESk1,...,k16(x) = DESk1,...,k16
(x) for every set of keys

k1, . . . , k16 and input x. Here, y denotes the bitwise complement of the string y.
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Name:

Solution: Let f̂ be the DES mangler function. We first claim that for every key k and every
input x, it holds that f̂(k, x) = f̂(k, x). To see this, notice that for input x and key k, the input
to the S-boxes equals E(x)⊕ k where E is the expansion function. Since E simply duplicates half
of the bits of its input, we have that E(x) = E(x). Therefore E(x) ⊕ k = E(x) ⊕ k = E(x) ⊕ k.
Since the input to the S-boxes is the same, the output from the S-boxes is also the same. Applying
the mixing permutation does not change the fact that the outputs are equal. We conclude that
f̂(k, x) = f̂(k, x) .

Next look at the entire Feistel structure. For input L0, R0 and key k, the values after the first
round are L1 = R0 and R1 = L0 ⊕ f̂(k1, R0). By the above, for input L0, R0 and key k the values
after the first round are L′1 = R0 = L1 and

R′1 = L0 ⊕ f̂(k, x) = L0 ⊕ f̂(k, x) = R1.
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5 Collision-Resistant Hash function (25 points)

1. Show that collision-resistant hash functions imply one-way functions.

Solution: (this is homework)

2. Let (Gen, H) be a collision-resistant hash function with output length ℓ. In this problem, we
will construct another collision-resistant hash function (Gen1, H1) such that if the output of
H1 is truncated by one bit, then it is no longer collision resistant.

(a) We define Gen1(1
n) : s

$←− Gen(1n). Let x0, x1 be two different input strings from the
message space, and set h as H(x0) with the last bit flipped.
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Name:

Hs
1(x) =


Solution: h if x = x1

Solution: Hs(x1) if Hs(x) = h

Solution: Hs(x) otherwise

(b) Show that (Gen1, H1) is collision-resistant assuming (Gen, H) is collision-resistant.

Solution: Assume that there exists an A that on input s outputs distinct x, x′ such
that Hs

1(x) = Hs
1(x
′) with noticeable probability. We will run this adversary on the key

s and obtain x, x′. Now we show that x, x′ can be used to output a collision in H.

First, if Hs
1(x), H

s
1(x
′) ̸= h then x, x′ ̸= x1. It follows that either Hs(x) = Hs(x′), in

which case (x, x′) is a collision in H, or (w.l.o.g.) x is such that Hs(x) = Hs(x1), in
which case (x, x1) is a collision in H.

Next, consider the case that Hs
1(x), H

s
1(x
′) = h. If Hs(x1) ̸= h then the only value such

that Hs
1(x) = h is x1 and hence there cannot be any valid collisions in H1 with the image

being h. So let us assume that Hs(x1) = h. Then, we again observe that x, x′ will be a
valid collision in H as Hs(x) = Hs(x′) = h.
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(c) Show that (Gen1, H2) is not collision resistant where H2 is defined as follows: compute
H1 and output all the bits except the last bit.

Solution: x0, x1 will be a collision for H2.
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