
UC Berkeley — CS171 : Undergraduate Cryptography Midterm I
Prof. Sanjam Garg February 14, 2024

Midterm I

Name:

SID:

• You may consult at most 1 double-sided sheet of handwritten notes. Apart from
that, you may not look at books, notes, etc. Calculators, phones, computers, and
other electronic devices are NOT permitted for looking up content. However,
you may use an electronic device such as a tablet for writing your answers.

• DSP Students: If you are allowed 1.5× (resp. 2×) the regular exam duration,
then you must submit your exam within 130 = 80 ∗ 1.5 + 10 (resp. 170 = 80 ∗ 2 + 10)
mins.

• We will not be answering questions during the exam. If you feel that something
is unclear please write a note in your answer.



1 Multiple Choice (15 points)

In the multiple choice section, no explanations are needed for your answers. Each
question is worth 3 points, and there is no penalty for wrong answers. Please mark
your answers clearly.

1. Which of the following functions are negligible? (There may be multiple negligible functions.)

2− log2(n)

2−(log2(n))
3

2−
√
n

2−(n2)

Solution: The first function is non-negligible because 2− log2(n) = 1
n . The rest of the functions

are negligible.

2. True or False: If f(n) and g(n) are non-negligible functions, then h(n) = f(n) · g(n) is also
non-negligible.

True

False

Solution: False. Here is a counterexample:

Let f(n) =

{
2−n , n is even

1 , n is odd

g(n) =

{
1 , n is even

2−n , n is odd

Then f(n) · g(n) = 2−n

f(n) and g(n) are non-negligible, but f(n) · g(n) is negligible.

3. True or False: If an encryption scheme Π is CCA-secure, then it is also CPA-secure.
True

False

Solution: True

4. Suppose (Gen,Enc,Dec) is a CPA-secure encryption scheme that encrypts messages belonging
to a field F. Construct a new encryption scheme as follows:
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Name:

• Gen1(1
n) : samples k′ ← Gen(1n). Then it samples p, a random degree-d polynomial

over the field F. The key k for this encryption scheme is the tuple of these values:

k = (k′, p)

(here p refers to the description of the polynomial)

• Enc1(k,m) computes and outputs c = Enc(k′,m) ∥ p(m).

• Dec1(k, c) just runs Dec(k
′, ·) on the first part of the ciphertext.

In the CPA security experiment, what is the minimum number of queries to the Enc1 oracle
that are needed to break the CPA security of the scheme (Gen1,Enc1,Dec1). i.e. What is the
minimum number of queries needed to figure out b given Enc1(k,mb)?

Only count phase-I and phase-II queries; do not count the query used to compute the chal-
lenge ciphertext.

Solution: 1 phase-I query is sufficient to break CPA security.

Let us construct an adversary to break CPA security with one phase-I query:

(a) The adversary chooses messages (m0,m1) such that m0 ̸= m1, uniformly at random.
With high probability, p(m0) ̸= p(m1).

(b) Then in phase I, they query Enc1(k,m0), so they learn p(m0).

(c) Then they output challenge messages (m0,m1). When they receive the challenge cipher-
text, they can check whether it contains p(m0). If so, they output b′ = 0. Otherwise,
they output b′ = 1.

If p(m0) ̸= p(m1), then the adversary is always correct (b′ = b).

5. Which of the following modes of encryption do not require the PRF/PRP Fk used to be
efficiently invertible? There may be multiple such modes.

Electronic Code Book (ECB)

Cipher Block Chaining (CBC)

Output Feedback (OFB)

Counter (CTR)

Solution: OFB, CTR
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2 Pseudorandom Functions (15 points)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function, and let

G(k, (x, y)) = F (k, x)⊕ F (k, y)

Prove that G is not a secure pseudorandom function.

The parts below will outline the proof that G is not pseudorandom and ask you to fill in the missing
details to complete the proof.

To show that G is not a secure PRF, let us construct a distinguishing algorithm D that can
distinguish G(k, ·) from a truly random function R(·) (given query access to one of these functions).

1. D makes a single query (x∗, y∗) to the function:

(x∗, y∗) =

Solution: Choose any arbitrary (x∗, y∗) such that x∗ = y∗.

Let z∗ be the response obtained.

2. Next, D outputs 1 if

and outputs 0 otherwise.

Solution: D outputs 1 if z∗ = 0n.

3. Pseudorandom case: In the case where D is querying G(k, ·), what is the probability that D
outputs 1 (i.e. what is Pr[DG(k,·) = 1])? Here the probability is over the randomness of D
and the randomness of sampling k.

Explain your reasoning.

Solution: Pr[DG(k,·) = 1] = 1 because G(k, (x∗, y∗)) = F (k, x∗) ⊕ F (k, x∗) = 0n with
certainty.

4. Truly random case: Let R be a function sampled uniformly at random from the set of all
functions that map {0, 1}n × {0, 1}n → {0, 1}n.
In the case where D is querying R(·), what is the probability that D outputs 1 (i.e. what
is Pr[DR(·) = 1])? Here the probability is over the randomness of D and the randomness of
sampling R.
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Explain your reasoning.

Solution: For any given (x∗, y∗), the value of R(x∗, y∗) is uniformly random over {0, 1}n,
where the randomness is over the choice of R. Therefore, D outputs 1 with probability 2−n.

5. Finish the proof to argue that D breaks PRF security for G.

Solution: To summarize the previous argument,

|Pr[DG(k,·)=1]− Pr[DR(·) = 1]| = 1− 2−n

which is non-negligible. Therefore, G is not a secure PRF.
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3 Pseudorandom Functions Again (15 points)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function. Prove that the following function
H is also a pseudorandom function:

H(k, x) = F (k, x)⊕ x

Solution:

1. We will prove that if there exists an adversary DH that distinguishes H(k, ·) from R1(·) with
non-negligible advantage, then we can construct an adversary DF that distinguishes F (k, ·)
from R2(·) with the same advantage.

Description of DF :

(a) DF runs DH .

(b) Whenever DH outputs a query x, DF forwards the query to its oracle to get a response
y. Then it sends to DH the response y ⊕ x.

(c) Finally, DF outputs whatever DH outputs.

2. Pseudorandom case: If DF is interacting with an oracle for F (k, ·), then it has successfully
simulated DH ’s interaction with an oracle for H(k, ·).

Pr[D
F (k,·)
F = 1] = Pr[D

H(k,·)
H = 1]

3. Truly random case: Let us define

R1(x) = R2(x)⊕ x

If R2 is a uniformly random function, then so is R1. Therefore, if DF is interacting with an
oracle for R2(·), then it has successfully simulated DH ’s interaction with a different random
function R1.

Pr[D
R2(·)
F = 1] = Pr[D

R1(·)
H = 1]

4. In summary:∣∣∣Pr[DF (k,·)
F = 1]− Pr[D

R2(·)
F = 1]

∣∣∣ = ∣∣∣Pr[DH(k,·)
H = 1]− Pr[D

R1(·)
H = 1]

∣∣∣
5. Assume toward contradiction that H is not a PRF. Then there exists a DH such that∣∣∣Pr[DH(k,·)

H = 1] − Pr[D
R1(·)
H = 1]

∣∣∣ is non-negligible. Then we’ve shown that there exists

a DF such that
∣∣∣Pr[DF (k,·)

F = 1] − Pr[D
R2(·)
F = 1]

∣∣∣ is non-negligible. This implies that F is

not a PRF, which is contradiction.

6. Therefore our assumption must be false, so in fact, H is a PRF.
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4 CPA-Secure Encryption (20 points)

Let (Gen,Enc,Dec) be a CPA-secure encryption scheme. Below, we will construct another encryp-
tion scheme and prove that it is also CPA-secure.

In the encryption scheme below, let the message m belong to {0, 1}n.

• Gen1(1
n): Sample the key as follows: k ← Gen(1n).

• Enc1(k,m): Sample r ← {0, 1}n uniformly at random. Then compute c0 := Enc(k, r) and
c1 := r ⊕m. Output the ciphertext c = (c0, c1).

• Dec1(k, (c0, c1)): Unspecified

1. Fill in the decryption algorithm so that every ciphertext is decrypted correctly.

Dec1(k, (c0, c1)):

Solution: Dec1(k, (c0, c1)): Compute r′ := Dec(k, c0) and then compute m′ := r′⊕c1. Output m′.

2. Prove that (Gen1,Enc1,Dec1) satisfies CPA security.

Solution:

Note: In the solution below, we’ve included a lot more detail than students would be expected
to give on an exam; we believe this makes it easier to learn from the solution. For ease of reading,
we’ve marked in gray the sections that can be skipped if you are just skimming the solution.

1. Let’s define two hybrids that are identical, except in eq. (1) and eq. (2) below.

• H0 is the CPA security game for (Gen1,Enc1,Dec1). Also, let A be the adversary in this
game.

Here’s the hybrid in more detail. (This level of detail is optional, but it can be very
helpful to the reader of your proofs).

(a) Setup: The challenger samples k ← Gen1(1
n).
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(b) Phase I queries: A sends the challenger a message, and the challenger responds
with

c =
(
Enc(k, r), (r ⊕m)

)
where r ← {0, 1}n. A can repeat this step many times.

(c) Challenge: A outputs two messages m0,m1. The challenger samples a bit b ←
{0, 1}, and sends A the encryption c∗ of mb:

c∗ = Enc(k, r), (r ⊕mb) (1)

where r is sampled uniformly at random.

(d) Phase II queries: Work the same as phase I queries.

(e) Output: A outputs a bit b′. The output of the hybrid is 1 if b = b′ and 0 otherwise.

• H1 is the same as H0 except the challenge ciphertext c∗ is (Enc(k, 0n), (r ⊕mb)).

Here’s the hybrid in more detail, with any change from Hybrid 0 underlined:

(a) Setup: The challenger samples k ← Gen1(1
n).

(b) Phase I queries: A sends the challenger a message, and the challenger responds
with

c =
(
Enc(k, r), (r ⊕m)

)
where r ← {0, 1}n. A can repeat this step many times.

(c) Challenge: A outputs two messages m0,m1. The challenger samples a bit b ←
{0, 1}, and sends A the encryption c∗ of mb:

c∗ = Enc(k, 0n), (r ⊕mb) (2)

where r is sampled uniformly at random.

(d) Phase II queries: Work the same as phase I queries.

(e) Output: A outputs a bit b′. The output of the hybrid is 1 if b = b′ and 0 otherwise.

2. Claim 4.1 If (Gen,Enc,Dec) is CPA secure, then for any adversary A,
∣∣Pr[H0 → 1] −

Pr[H1 → 1]
∣∣ is negligible.

Proof:

(a) Assume toward contradiction that for some adversary A,
∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣ is
non-negligible. Then we will construct an adversary B that breaks the CPA security of
(Gen,Enc,Dec).

(b) Notation: We’ll use (M0,M1, B,C∗) to denote some of the variables in the CPA security
game in which B is playing so that they don’t get mixed up with (m0,m1, b, c

∗) from the
hybrids above.

(c) B is designed to simulate one of the hybrids, HB, where B ∈ {0, 1} is chosen by the CPA
challenger.

At the beginning of the CPA security game, the challenger samples k ← Gen(1n), which
serves to simulate step a of the hybrids.

Description of B:
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i. In phase I of the CPA game, B will simulate step b of the hybrids. This entails
running A, and when A outputs an encryption query m, B will sample r ← {0, 1}n
and send A the response: c = (Enc(k, r), (r⊕m)). This requires B to make a query
to Enc(k, ·).

ii. In the challenge phase:

A. B samples an r ← {0, 1}n and outputs two challenge messages, M0 = r,M1 = 0n,
and receives in response either C∗ = Enc(k, r) (when B = 0) or C∗ = Enc(k, 0n)
(when B = 1).

B. Next, C∗ allows B to simulate step c of the hybrids. When A outputs its
messages (m0,m1) in step c, B will sample a bit b ← {0, 1} and respond to A
with

C∗, (r ⊕mb)

Note that if C∗ = Enc(k, r), then B has simulated step c of H0, but if C∗ =
Enc(k, 0n), then B has simulated step c of H1.

iii. In phase II, B will simulate steps d and e of the hybrids. The output of the hybrid
is a bit, which B outputs as well.

(d) As we argued above, B simulates HB. Therefore,

Pr[B → 1|B = 0] = Pr[H0 → 1]

Pr[B → 1|B = 1] = Pr[H1 → 1]∣∣∣Pr[B → 1|B = 0]− Pr[B → 1|B = 1]
∣∣∣ = ∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣
= non-negligible(n)

This means that B breaks the CPA security of (Gen,Enc,Dec).

(e) However, the problem states that (Gen,Enc,Dec) is CPA-secure, so we’ve arrived at a
contradiction. This means that our initial assumption is false, and in reality:∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣ = negl(n)

3. Claim 4.2 Pr[H1 → 1] = 1
2

Proof: Recall that in H1, the challenge ciphertext is c∗ = (Enc(k, 0n), (r ⊕ mb)). This
ciphertext gives the adversary no information about b because mb is masked by a uniformly
random r.

The only place where r and b appear in the ciphertext is in r ⊕ mb. Furthermore, r ⊕ mb

is a random string that is independent of b because r is uniformly random. Therefore, the
adversary’s probability of guessing b correctly (i.e. the probability that b′ = b) is exactly 1

2 .

4. Putting everything together, we have that:

Pr[H0 → 1] ≤ Pr[H1 → 1] +
∣∣∣Pr[H0 → 1]− Pr[H1 → 1]

∣∣∣
=

1

2
+ negl(n)
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SinceH0 is the CPA security experiment for (Gen1,Enc1,Dec1), this means that (Gen1,Enc1,Dec1)
is CPA-secure.

A Flawed Approach

Here is a similar approach that doesn’t quite work. It appeared on several student submissions, so
it’s useful to discus why it doesn’t work.

Claim 4.3 If (Gen,Enc,Dec) is CPA-secure, then (Gen1,Enc1,Dec1) is also CPA-secure.

Proof:

1. Assume toward contradiction that (Gen1,Enc1,Dec1) does not satisfy CPA security. Then
there is an adversary A that wins the CPA security game for (Gen1,Enc1,Dec1) with probabil-
ity 1

2+non-negligible(n). We will useA to construct an adversary B that breaks the CPA secu-
rity of (Gen,Enc,Dec), which is a contradiction. Then we can conclude that (Gen1,Enc1,Dec1)
does satisfy CPA security.

2. Description of B:

(a) B runs A and responds to any queries made by A. When A outputs a phase-I message
m, B samples r ← {0, 1}n and computes Enc(k, r) by making a phase-I query to its own
oracle Enc(k, ·). Then B computes c := Enc(k, r), (r ⊕m) and sends c to A.

(b) In the challenge phase of A’s CPA game, A outputs two messages (m0,m1). B samples a
new r ← {0, 1}n and outputs (r, 0n) as its challenge messages. B receives a ciphertext C∗

from the challenger, which is either either Enc(k, r) or Enc(k, 0n). B sends (C∗, (r ⊕m0))
to A.

(c) In phase II of B’s CPA game, B will simulate phase II of A’s CPA game. This works the
same way as phase I.

(d) Finally, A will output a bit b′, which B also outputs.

3. When C∗ = Enc(k, r), then A receives (Enc(k, r), (r ⊕m0)), which is a valid encryption of
m0 under Enc1. In this case, the probability that B wins the CPA game is 1

2 + δ(n),
where δ is some non-negligible function (This analysis is incorrect).

4. When C∗ = Enc(k, 0n), then A receives Enc(k, 0n), (r⊕m0), which is not a valid encryption of
m0. In fact, it gives no information about m0 because m0 is masked by a uniformly random
string r. Therefore, in this case, the probability that B wins the CPA game is exactly 1

2 .

5. In summary, the probability that B wins the CPA game is:

1

2
·
(
1

2
+ δ(n)

)
+

1

2
· 1
2
=

1

2
+

δ

2

which is still non-negligibly greater than 1
2 .
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To illustrate the problem with this analysis, let’s construct an adversary A that is purposefully
unhelpful to B.

Description of A: Let’s say that A can decrypt any ciphertext generated by Enc1(k, ·). When A
receives its challenge ciphertext, let A decrypt the ciphertext to get m∗. If m∗ ̸= m1, then A
samples b′ ← {0, 1} uniformly at random and outputs b′. If m∗ = m1, then A outputs b′ = 1.

Next, the claims below show that A breaks the CPA security of (Gen1,Enc1,Dec1), but B does not
break the CPA security of (Gen,Enc,Dec). Recall that the goal of the proof was to show that if A
breaks the CPA security of (Gen1,Enc1,Dec1), then B breaks the CPA security of (Gen,Enc,Dec),
so the proof is unsuccessful.

Claim 4.4 A wins the CPA security game for (Gen1,Enc1,Dec1) with probability 3
4 .

Proof: If the CPA challenger encrypted m0, then A outputs the correct answer (b′ = 0) with
probability 1

2 . If the CPA challenger encrypted m1, then A outputs the correct answer (b′ = 1)
with probability 1. Therefore, A wins the CPA security game with probability

1

2
· 1
2
+

1

2
· 1 =

3

4

Claim 4.5 B wins the CPA security game for (Gen,Enc,Dec) with probability 1
2 .

Proof: If the CPA challenger encrypted M0, then B outputs the correct answer (B′ = 0) with
probability 1

2 . If the CPA challenger encrypted M1, then B outputs the correct answer (B′ = 1)
with probability 1

2 . Therefore, B wins the CPA security game with probability 1
2 .

Another (valid) solution

This solution is a little simpler than the first solution given above. Rather than using A to dis-
tinguish between a valid and an invalid ciphertext, we will use A to distinguish between two valid
ciphertexts. This solution is due to an anonymous student – thank-you to them!

Solution:

Claim 4.6 If (Gen,Enc,Dec) is CPA-secure, then (Gen1,Enc1,Dec1) is also CPA-secure.

Proof:

1. Assume toward contradiction that (Gen1,Enc1,Dec1) does not satisfy CPA security. Then
there is an adversary A that wins the CPA security game for (Gen1,Enc1,Dec1) with probabil-
ity 1

2 plus non-negligible. We will useA to construct an adversary B that breaks the CPA secu-
rity of (Gen,Enc,Dec), which is a contradiction. Then we can conclude that (Gen1,Enc1,Dec1)
does satisfy CPA security.
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2. Description of B:

(a) B runs A and responds to any queries made by A. When A outputs a phase-I message
m, B samples r ← {0, 1}n and computes Enc(k, r) by making a phase-I query to its own
oracle Enc(k, ·). Then B computes c := (Enc(k, r), (r ⊕m)) and sends c to A.

(b) In the challenge phase of A’s CPA game, A outputs two messages (m0,m1). B samples
a ciphertext c∗1 ← {0, 1}n. Then it computes r0 := c∗1 ⊕m0 and r1 := c∗1 ⊕m1. Then B
outputs (r0, r1) as its challenge messages.

The CPA challenger samples B ← {0, 1} and sends Enc(k, rB) to B. Then B sends

(Enc(k, rB), c
∗
1)

to A.
(c) In phase II of B’s CPA game, B will simulate phase II of A’s CPA game. This works the

same way as phase I.

(d) Finally, A will output a bit b′, which B also outputs.

3. Note that for either value of B, (Enc(k, rB), c
∗
1) is a valid encryption of mB under Enc1(k, ·).

This is because c∗1 = (rB ⊕mB). Furthermore, rB is uniformly random and independent of
(m0,m1, B). So B has correctly simulated the CPA security game for (Gen1,Enc1,Dec1).

4. If A wins the simulated CPA security game for (Gen1,Enc1,Dec1), by correctly guessing B,
then B wins the CPA security game for (Gen,Enc,Dec). Therefore, A’s success probability
in the CPA security game for (Gen1,Enc1,Dec1) equals B’s success probability in the CPA
security game for (Gen,Enc,Dec). If A breaks the CPA security of (Gen1,Enc1,Dec1) (by
winning the corresponding CPA game with probability 1

2 +non-negligible(n)), then B breaks
the CPA security of (Gen,Enc,Dec).

5. We know that (Gen,Enc,Dec) is CPA-secure, so our initial assumption must be false, and in
truth, (Gen1,Enc1,Dec1) is also CPA-secure.
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5 Perfectly Secret Encryption (15 points)

In this problem we propose a definition of perfect secrecy for the encryption of two messages. We
will prove that this definition cannot be satisfied by any encryption scheme.

Notation: We consider distributions over pairs of messages from the message space M; we let
M1 and M2 be random variables denoting the first and second message, respectively. (We stress
that these random variables are not assumed to be independent.)

Encryption works as follows:

1. Generate a (single) key k, sample a pair of messages (m1,m2) according to the given distri-
bution.

2. Compute ciphertexts c1 ← Enc(k,m1) and c2 ← Enc(k,m2); this induces a distribution over
pairs of ciphertexts, and we let C1 and C2 be the corresponding random variables.

Proposed definition: Let us say that an encryption scheme (Gen,Enc,Dec) is perfectly secret
for two messages if for all distributions overM×M, all (m1,m2) ∈ M×M, and all ciphertexts
(c1, c2) ∈ C × C for which Pr[C1 = c1 ∧ C2 = c2] > 0,

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2] = Pr[M1 = m1 ∧M2 = m2].

Question: Prove that no encryption scheme can satisfy the definition above. (You may assume
that the encryption scheme satisfies perfect correctness).

Solution:

1. The key insight is that if m1 ̸= m2, then the corresponding ciphertexts, c1 and c2, must not be
equal. For any encryption scheme, the decryption function must be perfectly correct: every
ciphertext should be decrypted to the correct message. If it were possible that m1 ̸= m2 and
c := c1 = c2, then the decryption of c would sometimes be incorrect.

2. Now, let’s state that idea formally. Choose the distribution of the messages (M1,M2) such
that 0 < Pr[M1 = M2] < 1. Then 0 < Pr[C1 = C2] as well.

3. Choose a value c ∈ C such that Pr[C1 = C2 = c] > 0. Then set c1 = c2 = c.

4. Choose m1 and m2 such that m1 ̸= m2, and Pr[M1 = m1 ∧M2 = m2] > 0.

5. By the correctness of the encryption scheme,

Pr[C1 = C2 = c | M1 = m1 ∧M2 = m2] = 0

which implies, by Bayes’ theorem, that

Pr[M1 = m1 ∧M2 = m2 | C1 = C2 = c] = 0
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6. However Pr[M1 = m1 ∧M2 = m2] > 0. Therefore:

Pr[M1 = m1 ∧M2 = m2 | C1 = C2 = c] ̸= Pr[M1 = m1 ∧M2 = m2]

This means that the scheme does not satisfy the definition given above for perfect secrecy for
two messages.
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