Example Answers From Midterm II CS 171

March 2024

Summary

- 2 Statement of Question 2
- 3 Example Answers for Question 2
- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

- Let's go over some typical answers to the short answer questions and discuss what works and what doesn't.
- We give partial credit for stating the correct intuition for the proof.

What makes a good proof?

- No corner cases: It should not be possible to find flaws in your argument. There should be no corner cases where your claims are false.
- Clear writing: Express your ideas clearly. Use complete sentences, precise language, etc.

Summary

- 2 Statement of Question 2
 - 3 Example Answers for Question 2
- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

Let $f : \{0,1\}^n \to \{0,1\}^n$ be a OWF. Use f to construct another OWF g such that $g : \{0,1\}^n \to \{0,1\}^n$ and $g(0^n) = 0^n$. Your answer should:

- Describe a construction of g.
- 2 Prove that g is a OWF.

Summary

2 Statement of Question 2

3 Example Answers for Question 2

- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

Example Answer

•
$$g(x) = \begin{cases} 0^n & x = 0^n \\ f(x) & \text{otherwise} \end{cases}$$

- If g(x) is not a secure OWF, then we should be able to find a preimage of g(x) with non-negligible probability.
- This function g(x) is still a OWF because the output of the function that is invertible is 0^n .
- However, 0^n only occurs with probability $\frac{1}{2^n}$ and every other output is f(x) which is secure.
- Therefore, we can only invert g(x) with negligible probability and it is a OWF.

Comments:

- The intuition is right, however a reduction to the security of *f* is absent.
- The answer loosely resembles a contradiction proof in the beginning, but then the "proof" is given as an *observation* instead of a reduction.

Summary

- 2 Statement of Question 2
- 3 Example Answers for Question 2
- 4 Statement of Question 3
 - 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

- Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function.
- Let *H* = (Gen, *H*) be a collision-resistant hash function with key space {0,1}ⁿ and input space *X*, which may be very large. For every key s ← Gen(1ⁿ), s ∈ {0,1}ⁿ and H^s : X → {0,1}ⁿ.
- Let $G: \{0,1\}^{2n} \times \mathcal{X} \to \{0,1\}^n$ be defined as follows:

$$G((k,s),x) = F(k,H^s(x))$$

• **Question:** Prove that G is a pseudorandom function.

Let $Hyb_0(A, n)$ be the PRF security game in which the adversary A gets query access to G. In particular:

- **1** The PRF challenger samples $k \leftarrow \{0,1\}^n$ and $s \leftarrow \text{Gen}(1^n)$.
- 2 The adversary $\mathcal A$ gets query access to the following function:

$$G(\cdot)=F(k,H^{s}(\cdot))$$

So The adversary outputs a bit *b*, which is the output of the hybrid.

Let $\underline{Hyb_1(\mathcal{A}, n)}$ be the same as $Hyb_0(\mathcal{A}, n)$, except $F(k, \cdot)$ is replaced with a uniformly random function $R_1 : \{0, 1\}^n \to \{0, 1\}^n$:

- The PRF challenger samples a function R₁ uniformly at random from the set of all functions mapping {0,1}ⁿ → {0,1}ⁿ. They also sample s ← Gen(1ⁿ).
- **2** The adversary \mathcal{A} gets query access to the following function:

 $R_1(H^s(\cdot))$

The adversary outputs a bit b, which is the output of the hybrid.

Let $Hyb_2(\mathcal{A}, n)$ be the same as $Hyb_0(\mathcal{A}, n)$ except $F(k, H^s(\cdot))$ is replaced with a uniformly random function $R_2 : \mathcal{X} \to \{0, 1\}^n$:

- The PRF challenger samples a function R_2 uniformly at random from the set of all functions mapping $\mathcal{X} \to \{0,1\}^n$.
- **2** The adversary \mathcal{A} gets query access to:

 $R_2(\cdot)$

③ The adversary outputs a bit *b*, which is the output of the hybrid.

Prove that for any PPT adversary $\mathcal{A},$

$$\big|\operatorname{\mathsf{Pr}}[\operatorname{\mathsf{Hyb}}_0(\mathcal{A}, n) o 1] - \operatorname{\mathsf{Pr}}[\operatorname{\mathsf{Hyb}}_1(\mathcal{A}, n) o 1] \big| \le \operatorname{\mathsf{negl}}(n)$$

イロト イヨト イヨト イヨト

Prove that for any PPT adversary $\mathcal{A},$

$$\big|\operatorname{\mathsf{Pr}}[\operatorname{\mathsf{Hyb}}_1(\mathcal{A}, n) o 1] - \operatorname{\mathsf{Pr}}[\operatorname{\mathsf{Hyb}}_2(\mathcal{A}, n) o 1] \big| \le \operatorname{\mathsf{negl}}(n)$$

イロト イヨト イヨト イヨト

- Our proof must use the PRF security of *F* and the collision-resistance of *H*.
- If F is not a PRF, then G is not a PRF. Example: What if F(x) = 0 for all x.
- If \mathcal{H} is not collision-resistant, then G is not a PRF. Example: What if $H^{s}(x) = H^{s}(\overline{x})$ for all s, x.

Summary

- 2 Statement of Question 2
- 3 Example Answers for Question 2
- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

To prove lemma 3.1:

- $F(k, \cdot)$ is indistinguishable from $R_1(\cdot)$ because F is a pseudorandom function.
- We can treat H^s(x) as just an input to F(k, ·) or R₁(·) in hybrids 0 and 1.
- In conclusion, F(k, H^s(·)) is indistinguishable from R₁(H^s(·)) because F(k, ·) is indistinguishable from R₁(·).

Comments:

- The intuition is right, but the argument doesn't get more concrete than intuition.
- You need to construct an adversary that will break the pseudorandomness of *F*.

< Ξ

To prove lemma 3.2:

- R_1 and R_2 are truly random functions, so $R_1(H^s(\cdot))$ and $R_2(\cdot)$ are also uniformly random in some sense.
- Given query access to $R_1(H^s(\cdot))$ or $R_2(\cdot)$, the adversary cannot tell which of the two functions they are querying, because in either case, every query receives a uniformly random string in response.
- Therefore, Hyb₁ and Hyb₂ are indistinguishable.

Comments:

• It's possible to poke holes in this argument. What if $H^{s}(\cdot)$ is not collision-resistant? Then by querying the oracle on inputs that collide in H^{s} , you can distinguish $R_{1}(H^{s}(\cdot))$ and $R_{2}(\cdot)$.

To prove lemma 3.2:

- Since *H^s* is collision-resistant, then the adversary in Hyb₁ will (with overwhelming probability) query the function on inputs that do not collide.
- In response to each distinct query, the adversary will receive a uniformly random string that is independent of the other responses. This is the same distribution of responses that the adversary receives in Hyb₂. Therefore, Hyb₁ and Hyb₂ are indistinguishable.

Comments:

- The intuition is right, and the ideas are stated clearly.
- To get full credit, the answer needs to describe an algorithm that can find collisions in H^s (given an adversary that distinguishes Hyb₁ and Hyb₂).

Summary

- 2 Statement of Question 2
- 3 Example Answers for Question 2
- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
 - 7 Example Answers for Question 4

Let us be given two public-key encryption schemes $\Pi_1 = (\text{Gen}_{1,1}, _1)$ and $\Pi_2 = (\text{Gen}_{2,2}, _2)$. Let the ciphertext space of Enc₂ be the same as the message space of Enc₁. Also, one of Π_1 or Π_2 is CPA secure, and the other one is not, but we don't know which one is secure.

Define the composed scheme $\Pi = (Gen, Enc, Dec)$ as follows.

- Gen(1ⁿ): Run Gen₁(1ⁿ) \rightarrow (pk₁, sk₁) and Gen₂(1ⁿ) \rightarrow (pk₂, sk₂). Return ((pk₁, pk₂), (sk₁, sk₂)).
- $Enc((pk_1, pk_2), m)$: Return $c = Enc_1(pk_1, Enc_2(pk_2, m))$.
- $Dec((sk_1, sk_2), c)$: Return $m' = Dec_2(sk_2, Dec_1(sk_1, c))$

Question: Prove that if Π_1 is CPA-secure or Π_2 is CPA-secure, then Π is CPA-secure.

Use \mathcal{A} to construct an adversary \mathcal{B}_1 for the CPA game for Π_1 . \mathcal{B}_1 should win the CPA game for Π_1 with the same probability that \mathcal{A} wins the CPA game for Π .

Use \mathcal{A} to construct an adversary \mathcal{B}_2 for the CPA game for Π_2 . \mathcal{B}_2 should win the CPA game for Π_2 with the same probability that \mathcal{A} wins the CPA game for Π .

Summary

- 2 Statement of Question 2
- 3 Example Answers for Question 2
- 4 Statement of Question 3
- 5 Example Answers for Question 3
- 6 Statement of Question 4
- 7 Example Answers for Question 4

Example Answer

Most people had very similar answers and errors in both parts. To construct an adversary \mathcal{B}_1 , do the following:

- Whenever A makes a query m to the encryption oracle, send Enc₂(m) to the B₁ oracle and respond with the output Enc₁(Enc₂(m)).
- Get the two queries m_0, m_1 from A and send $Enc_2(m_0)$ and $Enc_2(m_1)$ to the challenger to get $Enc_1(Enc_2(m_b))$.
- Output whatever A outputs.

Comments:

- The main ideas in this proof are correct constructing the correct responses that matches what A expects to receive and using it to break CPA security.
- There are two main issues here that need to be fixed for full credit:
 - The key generation is not described The challenger for B₁ passes pk₁ to B₁ and B₁ must itself sample pk₂ and pass (pk₁, pk₂) to A.
 - Encryption queries do not have to be simulated since this is PKE anyone can encrypt messages when given the public key for the scheme.