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Midterm II

Name:

SID:

• You may consult at most 1 double-sided sheet of handwritten notes. Apart from
that, you may not look at books, notes, etc. Calculators, phones, computers, and
other electronic devices are NOT permitted for looking up content. However,
you may use an electronic device such as a tablet for writing your answers.

• DSP Students: If you are allowed 1.5× (resp. 2×) the regular exam duration,
then you must submit your exam within 120 = 80 ∗ 1.5 (resp. 160 = 80 ∗ 2) mins.

• The instructors will not be answering questions during the exam. If you feel that
something is unclear, please write a note in your answer.



1 Multiple Choice (20 points)

In the multiple choice section, no explanations are needed for your answers. No points
are deducted for wrong answers. Please mark your answers clearly.

1. Public-Key Encryption: For each of the following statements, indicate whether it is true
or false.

(a) Encrypting a message using PKE (public-key encryption) is usually slower in practice
than encrypting the message using SKE (secret-key encryption).

True

False

(b) EAV security is equivalent to CPA security for PKE schemes.
True

False

(c) CPA-secure PKE can be constructed from key-exchange protocols and vice versa: key-
exchange protocols can be constructed from CPA-secure PKE.

True

False

(d) In hybrid encryption, SKE is used to encrypt a shared public key pk for a PKE scheme.
True

False

2. Hard-Concentrate Predicates: Let f : {0, 1}n → {0, 1}n be a function that has a hard-
concentrate predicate h : {0, 1}n → {0, 1}. Also, let f(x)[1,n−1] be f(x) without the nth bit,
and let f(x)n be the nth bit of f(x).

Select all of the functions below for which h is (necessarily) a hard-concentrate predicate.

g1(x) = f(x)[1,n−1]

g2(x) = f(x)||
(
h(x)⊕ 1

)
g3(x) = f(x)n ⊕ h(x)

g4(x) = f(x)[1,n−1]||
(
f(x)n ⊕ h(x)

)
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3. Constructing A from B: For each of the following statements, indicate whether it is true
or false.

(a) PRGs can be used to construct PRFs, but PRFs are not sufficient to construct PRGs.
True

False

(b) Any OWF f : {0, 1}n → {0, 1}2n is also a PRG.
True

False

(c) Any PRG g : {0, 1}n → {0, 1}2n is also a OWF.
True

False

(d) Any length-preserving PRP (pseudorandom permutation) is also a PRF.
True

False

4. El Gamal Encryption: In the El Gamal encryption scheme, let the public key be pk =
(G, p, g, ga), where G is a cyclic group, p is the size of the group, g is a generator of the group,
and a ∈ Zp is part of the secret key.

Which one of the following algorithms correctly describes the process to encrypt a message
m ∈ G?

Sample k ← Zp. Compute c1 = gk and c2 = ga · gk ·m. Output (c1, c2).

Sample k ← Zp. Compute c1 = (ga)k and c2 = gk +m. Output (c1, c2).

Sample k ← Zp. Compute c1 = gk and c2 = (ga)k ·m. Output (c1, c2).

Sample k ← Zp. Compute c1 = (ga)k and c2 = gk ·m. Output (c1, c2).
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2 One-Way Functions (15 points)

Question: Let f : {0, 1}n → {0, 1}n be a OWF. Use f to construct another OWF g such that
g : {0, 1}n → {0, 1}n and g(0n) = 0n. Your answer should describe a construction of g and prove
that g is a OWF.

Give a construction of g.
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Prove that the function g constructed above is a secure OWF.
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3 Domain Extension with CRHFs (25 Points)

We will examine a simple way to extend the domain of a MAC by first hashing the message with
a CRHF.

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function.

Let H = (Gen, H) be a collision-resistant hash function with key space {0, 1}n and input space X ,
which may be very large. For every key s← Gen(1n), s ∈ {0, 1}n and Hs : X → {0, 1}n.

Let G : {0, 1}2n ×X → {0, 1}n be defined as follows:

G((k, s), x) = F
(
k,Hs(x)

)
3.1 Pseudorandom Function (15 Points)

Question: Prove that G is a pseudorandom function.

You may wish to follow the template provided below.

Let’s define several hybrids. For a given adversary A:

1. Let Hyb0(A, n) be the PRF security game in which the adversary A gets query access to G.
In particular:

(a) The PRF challenger samples k ← {0, 1}n and s← Gen(1n).

(b) The adversary A gets query access to the following function:

G(·) = F (k,Hs(·))

(c) The adversary outputs a bit b, which is the output of the hybrid.

2. Let Hyb1(A, n) be the same as Hyb0(A, n), except F (k, ·) is replaced with a uniformly random
function R1 : {0, 1}n → {0, 1}n:

(a) The PRF challenger samples a function R1 uniformly at random from the set of all
functions mapping {0, 1}n → {0, 1}n. They also sample s← Gen(1n).

(b) The adversary A gets query access to the following function:

R1(H
s(·))

(c) The adversary outputs a bit b, which is the output of the hybrid.
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3. Let Hyb2(A, n) be the same as Hyb0(A, n) except F (k,Hs(·)) is replaced with a uniformly
random function R2 : X → {0, 1}n:

(a) The PRF challenger samples a function R2 uniformly at random from the set of all
functions mapping X → {0, 1}n.

(b) The adversary A gets query access to:

R2(·)

(c) The adversary outputs a bit b, which is the output of the hybrid.

Lemma 3.1 For any PPT adversary A,
∣∣Pr[Hyb0(A, n)→ 1]− Pr[Hyb1(A, n)→ 1]

∣∣ ≤ negl(n).

Proof:
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Lemma 3.2 For any PPT adversary A,
∣∣Pr[Hyb1(A, n)→ 1]− Pr[Hyb2(A, n)→ 1]

∣∣ ≤ negl(n).

Proof:

10



Name:

11



Finish the proof.
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3.2 Message Authentication Code (10 points)

Question: Use G (defined above) to construct a secure MAC Π = (GenΠ,MacΠ,VerifyΠ) that
takes messages m ∈ X .

You may use the template provided below. You do not need to prove that your construction is
secure.

1. GenΠ(1
n): Sample k ← {0, 1}n and s← Gen(1n), and output kΠ = (k, s).

2. MacΠ(kΠ,m):

3. VerifyΠ(kΠ,m, t):
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4 Public-Key Encryption (20 points)

The composition of two PKE schemes with independent keys is CPA-secure as long as at least one
of the schemes is CPA-secure. We will show most of the proof of this claim.

Question: Follow the outline given below and fill in any blanks.

Let us be given two public-key encryption schemes Π1 = (Gen1,Enc1,Dec1) and Π2 = (Gen2,Enc2,Dec2).
Let the ciphertext space of Enc2 be the same as the message space of Enc1. Also, one of Π1 or Π2

is CPA secure, and the other one is not, but we don’t know which one is secure.

Define the composed scheme Π = (Gen,Enc,Dec) as follows. Fill in the algorithm for Dec so
that Π satisfies correctness.

• Gen(1n): Run Gen1(1
n)→ (pk1, sk1) and Gen2(1

n)→ (pk2, sk2). Return ((pk1, pk2), (sk1, sk2)).

• Enc((pk1, pk2),m): Return c = Enc1(pk1,Enc2(pk2,m)).

• Dec((sk1, sk2), c): Return

Theorem 4.1 If Π1 is CPA-secure or Π2 is CPA-secure, then Π is CPA-secure.

Proof:

1. Overview: To show that Π is CPA-secure, we will give a proof by contradiction. Suppose
that there is a PPT adversary A that wins the CPA security game for Π with non-negligible
probability. Then we will construct an adversary B1 for the CPA game for Π1 and an adversary
B2 for the CPA game for Π2. Both B1 and B2 will succeed with non-negligible probability,
which breaks CPA security for both Π1 and Π2. This contradicts the fact that at least one
of them was CPA-secure.
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2. Use A to construct an adversary B1 for the CPA game for Π1. B1 should win the
CPA game for Π1 with the same probability that A wins the CPA game for Π.
Do not include the proof that your adversary works, just construct the adversary.

15



3. Use A to construct an adversary B2 for the CPA game for Π2. B2 should win the
CPA game for Π2 with the same probability that A wins the CPA game for Π.
Do not include the proof that your adversary works, just construct the adversary.
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