
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 10
Due Date: April 25, 2024 at 8.59pm via Gradescope

1 Proof of Decryption (10 Points)

We will construct a zero-knowledge proof system for DDH triples. This can be used to prove
that a given El Gamal ciphertext was decrypted correctly without revealing the secret de-
cryption key.

Let pp = (G, q, g) ← G(1n) be a group in which DDH is hard. Let L be the language of
DDH triples for this group:

L = {(pp, ga, gb, gc) : c = a · b mod q}

Given an instance x = (pp, ga, gb, gc) ∈ L, let the corresponding witness be w = b. The
witness provides a simple way to verify that x ∈ L:

R(x,w) =

{
1 if gw = gb and (ga)w = gc

0 else

We can also prove that x ∈ L without revealing the witness to the verifier. To do so, we
will construct a zero-knowledge proof below.

A Zero-Knowledge Protocol for L:

• Inputs: The prover P takes inputs (1λ, x, w) and the verifier V takes inputs (1λ, x).

x = (pp, ga, gb, gc), and w ∈ Zq.

• P samples x ← Zq, computes gt = (ga)x, and sends (gx, gt) to V . Note that t = a · x
mod q.

• V samples y← Zq and sends y to P .

• P computes z = w · y + x and sends z to V .

• V checks that:

1. gz = (gb)y · gx, and
2. (ga)z = (gc)y · gt

If both checks pass, then the verifier accepts the proof. Otherwise, they reject.

Questions:

1. Show that this proof system satisfies completeness and soundness.

2. Show that this proof system satisfies honest-verifier zero-knowledge.

The definitions of completeness, soundness, and honest-verifier zero-knowledge are given
in Discussion 11.

1



CS 171, Spring 2024 Prof. Sanjam Garg

Solution

1. Claim 1.1 (Completeness) If R(x,w) = 1, and if the prover and verifier follow the
protocol honestly, then the verifier will accept the proof with probability 1.

Proof

(a) R(x,w) = 1 if and only if w = b, and a · b = c mod q.

(b) In this case, the verifier’s checks will pass:

i. gz = gby+x = (gb)y · gx

ii. (ga)z = gaby+ax = gcy+ax = (gc)y · gt

(c) Therefore, the verifier will accept the proof with probability 1.

2. Claim 1.2 (Soundness) If x /∈ L, then when any adversarial prover P ∗ interacts with
the honest verifier V (1λ, x), the probability that the verifier accepts the proof is negl(λ).

Proof

(a) If x /∈ L, then c ̸= ab mod q.

(b) Let the adversarial prover’s first message be (gx, gt) for some t ∈ Zq.
1

(c) The verifier accepts if and only if:

z = by + x mod q

az = cy + t mod q

(d) We will show that the verifier accepts only if y = ax−t
c−ab mod q. To see why, let’s

do algebra on the equations above:

az = aby + ax mod q

az = cy + t mod q

cy + t = aby + ax mod q

(c− ab)y = ax− t mod q

y =
ax− t

c− ab
mod q

Note that we don’t encounter a divide-by-zero error because c− ab ̸= 0 mod q.

(e) Note that (a, b, c, x, t) are determined by the end of the prover’s first message,
before y is sampled. Then:

Pr
y←Zq

[
y =

ax− t

c− ab
mod q|(a, b, c, x, t)

]
=

1

q
= negl(λ)

This means that the verifier will accept the proof with probability ≤ negl(λ).

1We can’t assume that t = ax mod q because the prover is dishonest.

2



CS 171, Spring 2024 Prof. Sanjam Garg

3. Claim 1.3 (Honest-Verifier Zero-Knowledge) Let x ∈ L, and let the prover and
verifier follow the protocol honestly. Then there exists a simulator Sim such that
view(V ; 1λ, x, w) is identically distributed to Sim(1λ, x).

Proof

(a) The verifier’s view is the list of their inputs and the messages sent to and from the
verifier during the protocol:

view(V ; 1λ, x, w) =
[
(1λ, pp, ga, gb, gc), (gx, gt, y, z)

]
(b) SimV (1λ, x):

i. Sample y, z← Zq independently and uniformly at random.

ii. Compute

gx = gz · (gb)−y (1.1)

gt = (ga)z · (gc)−y (1.2)

iii. Output
(1λ, pp, ga, gb, gc), (gx, gt, y, z)

4. We will argue that the distribution of (y, z, gx, gt) is the same in the real and simulated
protocols.

5. In the simulated protocol: (x, t, y, z) have the following distribution: for a given (a, b, c, x, t, y, z),

Pr[X = x, T = t, Y = y, Z = z] =

{
1
q2

if eqs. 1.1 and 1.2 are satisfied

0 otherwise

The randomness comes from Y,Z, which are independent and uniformly random.

6. In the real protocol:

(a) (a, b, c, x, t, y, z) will satisfy equations 1.1 and 1.2. This is because

z = b · y + x

x = z− b · y

and

t = a · x = a · z− a · b · y
= a · z− c · y

(b) x and y are sampled independently and uniformly at random. And for a given
(a, b, c, x, y): (t, z) take the unique values that satisfy equations 1.1 and 1.2.

3



CS 171, Spring 2024 Prof. Sanjam Garg

(c) Therefore, for a given (a, b, c, x, t, y, z):

Pr[X = x, T = t, Y = y, Z = z] =

{
1
q2

if eqs. 1.1 and 1.2 are satisfied

0 otherwise

The randomness comes from X,Y , which are independent and uniformly random.

7. We’ve show that the distribution of (x, t, y, z) is the same in the real protocol and the
simulated protocol.

That means the distribution of view(V ; 1λ, x, w) is identical to the distribution of
SimV (1λ, x), so the protocol satisfies honest-verifier zero-knowledge.

4



CS 171, Spring 2024 Prof. Sanjam Garg

2 Hiding and Binding For KZG Commitments (15 Points)

In discussion 11, we showed that the basic KZG commitment protocol is not hiding because
the Commit function is deterministic. In section 2.1 below, we give a modified version of the
scheme in which the Commit function is randomized.

Question: Prove that the commitment scheme given in section 2.1 satisfies the notions of
hiding and polynomial binding given in section 2.2, assuming that the d-discrete log problem
is hard.

2.1 A Randomized Polynomial Commitment Scheme

1. Gen(1n):

(a) Let d be polynomial in n.

(b) Set up a bilinear map by sampling

pp = (G,GT , q, g, e)← G(1n)

(c) Sample h← G and τ ← Z∗q .
(d) Finally, output

params =
(
pp, gτ , g(τ

2), . . . , g(τ
d), h, hτ , h(τ

2), . . . , h(τ
d)
)

2. Commit(params, f):

(a) Let f be a polynomial ∈ Zq[X] of degree ≤ d:

f(X) =
d∑

i=0

αi ·Xi

where every αi ∈ Zq.

(b) Sample a polynomial r ∈ Zq[X] of degree ≤ d uniformly at random. In other
words, sample β0, . . . , βd ← Zq independently and uniformly at random, and let

r(X) =
d∑

i=0

βi ·Xi

(c) Compute and output the commitment:

com =

d∏
i=0

(
g(τ

i)
)βi

·
d∏

i=0

(
h(τ

i)
)αi

= gr(τ) · hf(τ)

Note: We also define Commit(params, f ; r) to take the random polynomial r as input,
rather than sampling r internally.

5



CS 171, Spring 2024 Prof. Sanjam Garg

2.2 Definitions

Hiding basically says that Commit(f, params) doesn’t reveal any information about f . The
definition of hiding resembles the definition of CPA security.

Definition 2.1 (Hiding)

Hiding-Game(n,A):

1. The challenger samples params← Gen(1n) and sends params to the adversary A.

2. A outputs two polynomials f0, f1 ∈ Zq[X] of degree ≤ d.

3. The challenger samples b ← {0, 1} and computes: com∗ = Commit(params, fb). They
send com∗ to A.

4. A outputs a guess b′ for b. The output of the game is 1 if b′ = b and 0 otherwise.

The commitment scheme is hiding if for any PPT adversary A,

Pr[Hiding-Game(n,A)→ 1] ≤ 1

2
+ negl(n)

Next, we’ll consider a notion called polynomial binding, which says that the adversary
cannot find two inputs to Commit that produce the same commitment. This resembles the
definition of collision-resistance.

Definition 2.2 (Polynomial Binding)

Polynomial-Binding-Game(n,A):

1. The challenger samples params← Gen(1n) and sends params to the adversary A.

2. A outputs two pairs (f0, r0) and (f1, r1), where f0, r0, f1, r1 are polynomials ∈ Zq[X] of
degree ≤ d.

3. The output of the game is 1 if f0 ̸= f1, and

Commit(params, f0; r0) = Commit(params, f1; r1)

Otherwise, the output of the game is 0.

The commitment scheme satisfies polynomial binding if

Pr[Polynomial-Binding-Game(n,A)→ 1] ≤ negl(n)

Finally, we will prove polynomial binding using the hardness of the following problem.

Definition 2.3 (A Variant of Discrete Log)
d-Discrete-Log(n,A):

1. Let d be polynomial in n.

6



CS 171, Spring 2024 Prof. Sanjam Garg

2. The challenger samples pp = (G,GT , q, g, e) ← G(1n) as well as τ ← Zq. Then they

send the adversary:
(
pp, gτ , g(τ

2), . . . , g(τ
d)
)

3. The adversary A outputs a guess τ ′ for τ . The output of the game is 1 if τ ′ = τ and 0
otherwise.

The d-discrete-log problem is hard if for any PPT adversary A,

Pr[d-Discrete-Log(n,A)→ 1] ≤ negl(n)

Note that if the d-discrete-log problem is hard, then in addition, the regular discrete log
problem is hard for G.

7



CS 171, Spring 2024 Prof. Sanjam Garg

Solution

1. Claim 2.4 The commitment scheme is hiding.

Proof

(a) Key Idea: gr(τ) is uniformly random over the randomness of r, so gr(τ) masks the

value of hf(τ).

(b) For any given τ , r(τ) is uniformly random in Zq, over the randomness of r. Then
for any poynomial f and any parameters params, the output of Commit(params, f)
is uniformly random in G due to the randomness of r.

(c) Then the commitment com∗ = Commit(params, fb) is actually independent of b. In
this case, the adversary’s probability of correctly guessing b is exactly 1

2 . Therefore,
the scheme is hiding.

2. Claim 2.5 The commitment scheme satisfies polynomial binding.

Proof

(a) If the d-discrete log problem is hard, then in addition, the regular discrete log
problem is hard for G. Assume toward contradiction that there is an adversary
ABinding that breaks polynomial binding. Then we will use ABinding to construct
two adversaries:

• An adversary B that solves the discrete log problem in G to find the x ∈ Zq

for which h = gx.

• An adversary C that solves the d-discrete log problem by computing τ from
params.

We will show that one of these adversaries succeeds with non-negligible probability.
This is a contradiction because discrete log and d-discrete log are hard. Therefore,
there is no adversary that breaks binding.

(b) Construction of B:
i. The discrete log challenger samples pp = (G,GT , q, g, e)← G(1n) and x← Zq.

They send (pp, gx) to B.
ii. B sets h = gx. Then they sample τ ← Z∗q and compute

params =
(
pp, gτ , g(τ

2), . . . , g(τ
d), h, hτ , h(τ

2), . . . , h(τ
d)
)

iii. They run ABinding on input params. With non-negligible probability, ABinding

outputs (f0, r0) and (f1, r1) such that f0 ̸= f1, and Commit(params, f0; r0) =
Commit(params, f1; r1).

iv. Compute and output

x =
r1(τ)− r0(τ)

f0(τ)− f1(τ)

8



CS 171, Spring 2024 Prof. Sanjam Garg

(c) If Commit(params, f0; r0) = Commit(params, f1; r1), and f0(τ) ̸= f1(τ), then

gr0(τ) · hf0(τ) = gr1(τ) · hf1(τ)

hf0(τ)−f1(τ) = gr1(τ)−r0(τ)

x · [f0(τ)− f1(τ)] = r1(τ)− r0(τ) mod q

x =
r1(τ)− r0(τ)

f0(τ)− f1(τ)
mod q

In this case, B solves the discrete log problem.

3. Construction of C:

(a) The d-discrete-log challenger samples pp = (G,GT , q, g, e) ← G(1n) as well as
τ ← Zq. Then they send the adversary:(

pp, gτ , g(τ
2), . . . , g(τ

d)
)

(b) The adversary C samples x← Zq and computes

h = gx, hτ = (gτ )x, . . . , h(τ
d) =

(
g(τ

d)
)x

params =
(
pp, gτ , g(τ

2), . . . , g(τ
d), h, hτ , h(τ

2), . . . , h(τ
d)
)

(c) They run ABinding on input params. With non-negligible probability, ABinding

outputs (f0, r0) and (f1, r1) such that f0 ̸= f1, and Commit(params, f0; r0) =
Commit(params, f1; r1).

(d) If f0 ̸= f1, then compute the roots of the polynomial f0(X) − f1(X). For each
root τ ′, check whether gτ

′
= gτ . If so, output τ ′.

4. If f0 ̸= f1, then f0(X) − f1(X) is a non-zero polynomial of degree ≤ d. Therefore, it
has at most d roots. If f0(τ) = f1(τ), then τ is one of those roots, so C will find τ and
win the d-discrete-log game.

5. One of the following events occurs with non-negligible probability:

(a) ABinding outputs (f0, r0) and (f1, r1) such that f0 ̸= f1, and Commit(params, f0; r0) =
Commit(params, f1; r1), and f0(τ) ̸= f1(τ).

(b) ABinding outputs (f0, r0) and (f1, r1) such that f0 ̸= f1, and Commit(params, f0; r0) =
Commit(params, f1; r1), and f0(τ) = f1(τ).

If the first event has non-negligible probability, then B breaks the hardness of discrete
log. If the second event has non-negligible probability, then C breaks the hardness of
d-discrete log.

In either case, we’ve arrived at a contradiction because both discrete log in G and d-
discrete log are assumed to be hard. Therefore, there does not exist a PPT adversary
ABinding that breaks the polynomial binding of the commitment scheme.

9



CS 171, Spring 2024 Prof. Sanjam Garg

3 Course Evaluation (Extra Credit: 2 Points)

Complete your course evaluation for this course. You can write as much or as little as you
want. Include a screenshot of the submission receipt when you submit this assignment to
Gradescope to prove that you’ve finished your evaluation.

10


	Proof of Decryption (10 Points)
	Hiding and Binding For KZG Commitments (15 Points)
	A Randomized Polynomial Commitment Scheme
	Definitions

	Course Evaluation (Extra Credit: 2 Points)

