
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 2
Due Date: February 8th, 2024 at 8:59pm via Gradescope

1. Negligible/Non-negligible functions

Let f, g : N → R be negligible functions, let p : N → R be a polynomial such that p(n) > 0
for all n ∈ N.

(a) Define h : N→ R as h(n) = f(n) + g(n). Prove that h is a negligible function.

(b) Define h : N→ R as h(n) = f(n) · p(n). Prove that h is a negligible function.

For each function below, either prove that it is negligible or prove that it is non-negligible
(all logarithms are base 2).

(c) f(n) = n−100 + 2−n

(d) f(n) = 1.01−n

(e) f(n) = 2−(logn)2

(f) f(n) = e− log3 n + e− log2 n + e− logn

Solution

(a) For a given polynomial P , we want to show that there exists NP such that for all n >
NP , h(n) < 1

P (n) . As f and g are negligible, then we can find Nf and Ng such that

f(n) < 1
2P (n) and g(n) < 1

2P (n) . Thus choose NP = max(Nf , Ng), so that for all n > NP ,

h(n) = f(n) + g(n) < 1
P (n) . Thus h is negligible.

(b) For a given polynomial P , we want to show that there exists NP such that for all n >
NP , h(n) < 1

P (n) . As f is negligible, then we can find Nf such that for all n > Nf ,

f(n) < 1
p(n)P (n) =⇒ f(n) · p(n) < 1

P (n) . Thus choose NP = Nf , so that for all n > NP ,

h(n) = f(n) · p(n) < 1
P (n) . Thus h is negligible.

(c) It is non-negligible. Consider f(n) = n−100 + 2−n.

Claim 0.1 There exists N0 ∈ N such that for all n > N0, 2
n > n100.

Proof Set N0 = 100 and the claim follows.

Now, for all n > N0, it follows that

f(n) = n−100 + 2−n

> n−100 + n−100

= 1/2(n100)

:= 1/p(n)

Thus, there exists a polynomial p(n) = 2n100 such that for every N ∈ N, there exists
n > max(N,N0) such that f(n) > 1/p(n). Hence, f(n) is non-negligible.

1

CS 171, Spring 2024 Prof. Sanjam Garg

(d) It is negligible. Consider any polynomial p(·) : N→ N.
Let p(n) = adn

d + ad−1n
d−1 + . . .+ a0.

Claim 0.2 There exists N0 ∈ N such that for all n ≥ N0, p(n) < nd+2.

Claim 0.3 There exist N1 such that for all n ≥ N1, 1.01
n > nd+2

Proof Observe that for any n ∈ N and n > 100, n > log2 n. SetN1 = max(2
d+2

log(1.01) , 100).
Then, for any n ≥ N1, log n ≥ (d+2)/ log(1.01). Thus, (d+2) log n ≤ log(1.01) log2 n <
n log(1.01).

It follows from the above two claims that for n > max(N0, N1) that f(n) < 1/p(n).

(e) It is negligible.

Claim 0.4 There exist N1 such that for all n ≥ N1, 2
log2 n > nd+2.

Proof Set N1 = 2d+2. Then, for any n ≥ N1, log
2 n = (log n)(log n) > (d+ 2) log n.

It follows from Claim 0.2 and Claim 0.4 that for all N > max(N0, N1), f(n) < 1/p(n).

(f) It is non-negligible. Observe that f(n) > e− logn and we now show that e− logn is non-
negligible. Notice that elogn = nlog e < n2 for all n > 2. Thus, setting p(n) = n2, we get
a proof that it is non-negligible.

2. 2-time security?

An encryption scheme (Gen,Enc,Dec) over message spaceM and ciphertext space C is said
to be 2-time perfectly secure if for any (m1,m2) ∈ M ×M and (m′

1,m
′
2) ∈ M ×M such

that m1 ̸= m2 and m′
1 ̸= m′

2 and for any c1, c2 ∈ C the following holds:

Pr[Enc(K,m1) = c1 ∧ Enc(K,m2) = c2] = Pr[Enc(K,m′
1) = c1 ∧ Enc(K,m′

2) = c2].

Note that in the above definition the key K is the same for encrypting m1,m2 (resp. m
′
1,m

′
2).

Consider the following encryption scheme for the message space Z23.

• Gen: Sample two elements a
$← Z23 and b

$← Z23.

• Enc((a, b),m) : Output c = a ·m+ b mod 23.

• Dec((a, b), c) : Compute m = (c− b) · a−1 mod 23 if a is invertible. Otherwise, output
error.

Show the following.

2

CS 171, Spring 2024 Prof. Sanjam Garg

1. Prove that for any message m ∈ Z23,

Pr[Dec(K,Enc(K,m)) = m] =
22

23

2. Prove that this is 2-time secure.

Solution

1. Let us use A to denote the random variable for a in the encryption scheme above.

If A ̸= 0, then the decryption algorithm recovers the message. If A = 0, then the
decryption algorithm outputs error. Pr[A ̸= 0] = 22

23 .

2. (a) Variables: Fix any set of messages (m0,m1,m
′
0,m

′
1) ∈ Z23 such that m0 ̸= m1

andm′
0 ̸= m′

1. Also fix ciphertexts c1, c2 ∈ Z23. Next, let A← Z23 and B ← Z23 be
independent random variables. Let K = (A,B) be the random variable denoting
the key.

(b) The following events are equivalent:

Enc(K,m1) = c1 ∧ Enc(K,m2) = c2 (0.1)

A ·m1 +B = c1 ∧A ·m2 +B = c2 (0.2)

A =
c1 − c2
m1 −m2

∧B = c1 −m1 ·
c1 − c2
m1 −m2

(0.3)

To get event 0.3, we solved the system of equations for A and B. The system of
equations has a unique solution because m1 −m2 ̸= 0.

(c) In event 0.3, A and B are set equal to deterministic values. Since A and B are
sampled independently:

Pr

[
A =

c1 − c2
m1 −m2

∧B = c1 −m1 ·
c1 − c2
m1 −m2

]
= Pr

[
A =

c1 − c2
m1 −m2

]
· Pr

[
B = c1 −m1 ·

c1 − c2
m1 −m2

]
=

1

23
· 1
23

=
1

232

(d) By the same argument, we can show that

Pr[Enc(K,m′
1) = c1 ∧ Enc(K,m′

2) = c2] =
1

232

Therefore,

Pr[Enc(K,m1) = c1 ∧ Enc(K,m2) = c2] = Pr[Enc(K,m′
1) = c1 ∧ Enc(K,m′

2) = c2]

3

CS 171, Spring 2024 Prof. Sanjam Garg

3. Getting Adversarial

Alice the Frog is very excited to share her new encryption scheme with you. You are re-
sponsible for convincing her it is insecure. The objective of this question is to familiarize
you with the security framework of computational indistinguishibility. Download the zip file
at eecs171.com/assets/homework/hw2.zip. Fill in the TODOs and upload your completed
scheme2.py and adversary.py to Gradescope. You are provided with 5 files:

• scheme1.py specifies Alice’s encryption scheme. Do not change this code.

• scheme2.py is where you should write the decryption scheme corresponding to the
encryption scheme in scheme1.py.

• correctness.py provides you with a basic sanity test to confirm that the decryption
scheme you wrote successfully recovers a plaintext encrypted with Alice’s encryption
scheme. Typically, we require that correctness is enforced for every message, but here,
we are only checking for random messages.

• security.py contains the computational indistinguishibility security game which in-
vokes the adversary. Typically, we require that the adversary succeeds with probability
only non-negligibly better than 1/2, but here, we are checking that the adversary suc-
ceeds with probability 1.

• adversary.py is where you will write the adversarial code which is invoked by security.py
in the security game. As shown in the skeleton code, note that the adversary is called
twice.

Note: When making your submission, highlight both files and compress them directly, rather
than zipping a folder containing the files.
Solution
scheme2.py

de f dec (key , c i ph e r t e x t) :
”””Decrypt the message us ing the g iven encrypt ion scheme .”””
a e s c i phe r t ex t , x o r a l l b y t e s = c i phe r t e x t

I n i t i a l i z e AES c iphe r with key and a zero IV
c iphe r = Cipher (a lgor i thms .AES(key) , modes .ECB() , backend=de fau l t backend ())
encryptor = c iphe r . encryptor ()

Encrypt the zero value
z e ro va lu e enc ryp t ed = encryptor . update (b ’\ x00 ’ ∗ 16) + encryptor . f i n a l i z e ()

XOR the encrypted message with the encrypted zero value
decrypted message = bytes ([e ˆ z f o r e , z in z ip (a e s c i phe r t ex t , z e r o va lu e enc ryp t ed ∗ (l en (a e s c i p h e r t e x t) // 16 + 1))])

Ver i fy the XOR of a l l bytes
xor check = 0
f o r byte in decrypted message :

4

CS 171, Spring 2024 Prof. Sanjam Garg

xor check ˆ= byte

i f xor check != x o r a l l b y t e s :
r a i s e ValueError (” Decryption f a i l e d : XOR check mismatch ”)

re turn decrypted message

adversary.py

de f adversary (c a l l , encrypted message=None) :
”””Adversary func t i on .”””
m0 = b ’\ x00 ’∗7
m1 = b ’\ x01 ’∗7
i f c a l l == 1 :

F i r s t c a l l : Adversary s p e c i f i e s two messages
re turn m0, m1

e l i f c a l l == 2 :
Second c a l l : Adversary gue s s e s which message was encrypted
Extract the XOR part from the encrypted message
, xo r par t = encrypted message

Compute the XOR of a l l bytes f o r both messages r e c e i v ed in the f i r s t c a l l
de f xo r byte s (message) :

x o r r e s u l t = 0
f o r byte in message :

x o r r e s u l t ˆ= byte
re turn x o r r e s u l t

xor m0 = xor byte s (m0)
xor m1 = xor byte s (m1)

The message whose XOR matches the XOR part o f the encrypted message i s the one encrypted
i f xor m0 == xor par t :

r e turn 0
e l i f xor m1 == xor par t :

r e turn 1

Note that this is just a solution that works and there are different, simpler, more compli-
cated, etc. solutions that also work!

5

