CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 2

Due Date: February 8th, 2024 at 8:59pm via Gradescope

1. Negligible/Non-negligible functions

Let f,g: N — R be negligible functions, let p : N — R be a polynomial such that p(n) > 0
for all n € N.

(a) Define h: N — R as h(n) = f(n) + g(n). Prove that h is a negligible function.
(b) Define h: N — R as h(n) = f(n) - p(n). Prove that h is a negligible function.

For each function below, either prove that it is negligible or prove that it is non-negligible
(all logarithms are base 2).

(c) f(n) =n"10042-n

(d) f(n)=1.01""

() f(n)=2(logn)?

(f) f(n) = e l08°n 4 g=log°n 4 o—logn
Solution

(a) For a given polynomial P, we want to show that there exists Np such that for all n >
Np, h(n) < ﬁ. As f and g are negligible, then we can find Ny and N, such that
f(n) < %(n) and g(n) < 2P(j- Thus choose Np = max(Ny, Ng), so that for all n > Np,
h(n) = f(n)+g(n) < W‘ Thus h is negligible.

(b) For a given polynomial P, we want to show that there exists Np such that for all n >
Np, h(n) < %. As f is negligible, then we can find Ny such that for all n > Ny,
f(n) < m = f(n)-p(n) < %. Thus choose Np = Ny, so that for all n > Np,
h(n) = f(n)-p(n) < %. Thus h is negligible.

(¢) It is non-negligible. Consider f(n) = n=190 4 277
Claim 0.1 There exists Ng € N such that for all n > Ny, 2" > n'%

Proof Set Ny = 100 and the claim follows. [|

Now, for all n > Ny, it follows that

f(n) — n—100+2—n
> 100 4,100
= 1/2(n'")
= 1/p(n)

Thus, there exists a polynomial p(n) = 2n'% such that for every N € N, there exists

n > max(N, Ny) such that f(n) > 1/p(n). Hence, f(n) is non-negligible.

CS 171, Spring 2024 Prof. Sanjam Garg

(d) Tt is negligible. Consider any polynomial p(-) : N — N.

Let p(n) = agn? + aqg_1n®' + ... + ao.
Claim 0.2 There exists Ng € N such that for all n > Ny, p(n) < n®+2.

Claim 0.3 There exist Ny such that for all n > N, 1.01" > nd+t2

d+2
Proof Observe that for any n € N and n > 100, n > log® n. Set N; = max(2%s(1010, 100).
Then, for any n > Ny, logn > (d +2)/log(1.01). Thus, (d+ 2)logn < log(1.01)log?n <
nlog(1.01). []

It follows from the above two claims that for n > max(Ny, N1) that f(n) < 1/p(n).
(e) It is negligible.
Claim 0.4 There exist N1 such that for all n > Ny, glog”n - pd+2
Proof Set Ny = 2972, Then, for any n > Ny, log?n = (logn)(logn) > (d +2)logn. M

It follows from Claim 0.2 and Claim 0.4 that for all N > max(Ng, N1), f(n) < 1/p(n).

(f) It is non-negligible. Observe that f(n) > e~ !°™ and we now show that e~!°8™ is non-
negligible. Notice that €l°8™ = nl°8¢ < n? for all n > 2. Thus, setting p(n) = n?, we get

a proof that it is non-negligible.
|

2. 2-time security?

An encryption scheme (Gen, Enc, Dec) over message space M and ciphertext space C is said
to be 2-time perfectly secure if for any (mi,mg) € M x M and (mf,m}) € M x M such
that my # mo and m) # m), and for any ¢y, ca € C the following holds:

Pr[Enc(K,m1) = ¢1 A Enc(K, msy) = co] = Pr[Enc(K,m}) = ¢1 A Enc(K,mb) = ca].

Note that in the above definition the key K is the same for encrypting my, ma (resp. mf, m}).
Consider the following encryption scheme for the message space Zos.

e Gen: Sample two elements a ﬁ Zo3 and b i Zo3.

e Enc((a,b),m): Output c=a-m+b mod 23.

-1

e Dec((a,b),c) : Compute m = (¢c—b)-a~" mod 23 if a is invertible. Otherwise, output

error.

Show the following.

CS 171, Spring 2024 Prof. Sanjam Garg

1. Prove that for any message m € Zos,

22
Pr[Dec(K,Enc(K,m)) = m] = 7

2. Prove that this is 2-time secure.
Solution

1. Let us use A to denote the random variable for a in the encryption scheme above.

If A # 0, then the decryption algorithm recovers the message. If A = 0, then the
decryption algorithm outputs error. Pr[A # 0] = 22.

2. (a) Variables: Fix any set of messages (mq, mi, m(, m}) € Zaz such that mgy # my
and m{, # m). Also fix ciphertexts ¢1, co € Zas. Next, let A < Zoz and B < Zag be
independent random variables. Let K = (A, B) be the random variable denoting
the key.

(b) The following events are equivalent:

Enc(K,m1) = c1 A Enc(K,m2) = ¢ (0.1)
A m+B=cgNA-my+ B=cy
A:ﬂ/\B:cl—ml- i (0.3)

mi1 — My mi1 — My
To get event 0.3, we solved the system of equations for A and B. The system of
equations has a unique solution because m; — msg # 0.

(c) In event 0.3, A and B are set equal to deterministic values. Since A and B are
sampled independently:

Pr A_Cl_cg/\B_Cl_ml.cl_@]_Pr{A_M}.PF[B_Cl_ml.
mp —ma mp —ma mip —ma
111
23 23 232

(d) By the same argument, we can show that

1

Pr(Enc(K,m}) = c¢1 A Enc(K,mj) = 2] = 532

Therefore,

Pr[Enc(K,m1) = c1 A Enc(K, m2) = ca] = Pr[Enc(K, m}) = c1 A Enc(K, m}) = o]

C1 —C2

mi1 — My

CS 171, Spring 2024 Prof. Sanjam Garg

3. Getting Adversarial

Alice the Frog is very excited to share her new encryption scheme with you. You are re-
sponsible for convincing her it is insecure. The objective of this question is to familiarize
you with the security framework of computational indistinguishibility. Download the zip file
at eecs171.com/assets/homework/hw2.zip. Fill in the TODOs and upload your completed
scheme2.py and adversary.py to Gradescope. You are provided with 5 files:

e schemel.py specifies Alice’s encryption scheme. Do not change this code.

e scheme2.py is where you should write the decryption scheme corresponding to the
encryption scheme in schemel.py.

e correctness.py provides you with a basic sanity test to confirm that the decryption
scheme you wrote successfully recovers a plaintext encrypted with Alice’s encryption
scheme. Typically, we require that correctness is enforced for every message, but here,
we are only checking for random messages.

e security.py contains the computational indistinguishibility security game which in-
vokes the adversary. Typically, we require that the adversary succeeds with probability
only non-negligibly better than 1/2, but here, we are checking that the adversary suc-
ceeds with probability 1.

e adversary.py is where you will write the adversarial code which is invoked by security.py
in the security game. As shown in the skeleton code, note that the adversary is called
twice.

Note: When making your submission, highlight both files and compress them directly, rather
than zipping a folder containing the files.

Solution

scheme?2.py

def dec(key, ciphertext):
777 Decrypt the message using the given encryption scheme.
aes_ciphertext , xor_all_bytes = ciphertext

999 9

Initialize AES cipher with key and a zero IV
cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=default_backend ())
encryptor = cipher.encryptor ()

Encrypt the zero value
zero_value_encrypted = encryptor.update(b’\x00’ % 16) + encryptor.finalize ()

XOR the encrypted message with the encrypted zero value
decrypted_message = bytes([e " z for e, z in zip(aes_ciphertext, zero_value_e

Verify the XOR of all bytes
xor_check = 0
for byte in decrypted_message:

CS 171, Spring 2024 Prof. Sanjam Garg

xor_check "= byte

if xor_check != xor_all_bytes:
raise ValueError(” Decryption failed: XOR check mismatch”)

return decrypted_message
adversary.py

def adversary(call, encrypted_message=None):

777 Adversary function.”””

m0 = b’\x00’%7

ml = b’\x01’%7

if call = 1:
First call: Adversary specifies two messages
return m0O, ml

elif call = 2:
Second call: Adversary guesses which message was encrypted
Extract the XOR part from the encrypted message
_, xor_part = encrypted_message

Compute the XOR of all bytes for both messages received in the first
def xor_bytes(message):

xor_result = 0

for byte in message:

xor_result "= byte

return xor_result
xor-m0 = xor_bytes(m0)
xor.ml = xor_bytes(ml)

The message whose XOR matches the XOR part of the encrypted message

if xor.m0 = xor_part:
return 0

elif xor.ml = xor_part:
return 1

Note that this is just a solution that works and there are different, simpler, more compli-
cated, etc. solutions that also work! []

