
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 2
Due Date: February 8th, 2024 at 8:59pm via Gradescope

1. Negligible/Non-negligible functions

Let f, g : N → R be negligible functions, let p : N → R be a polynomial such that p(n) > 0
for all n ∈ N.

(a) Define h : N→ R as h(n) = f(n) + g(n). Prove that h is a negligible function.

(b) Define h : N→ R as h(n) = f(n) · p(n). Prove that h is a negligible function.

For each function below, either prove that it is negligible or prove that it is non-negligible
(all logarithms are base 2).

(c) f(n) = n−100 + 2−n

(d) f(n) = 1.01−n

(e) f(n) = 2−(logn)2

(f) f(n) = e− log3 n + e− log2 n + e− logn

2. 2-time security?

An encryption scheme (Gen,Enc,Dec) over message spaceM and ciphertext space C is said
to be 2-time perfectly secure if for any (m1,m2) ∈ M ×M and (m′

1,m
′
2) ∈ M ×M such

that m1 ̸= m2 and m′
1 ̸= m′

2 and for any c1, c2 ∈ C the following holds:

Pr[Enc(K,m1) = c1 ∧ Enc(K,m2) = c2] = Pr[Enc(K,m′
1) = c1 ∧ Enc(K,m′

2) = c2].

Note that in the above definition the key K is the same for encrypting m1,m2 (resp. m
′
1,m

′
2).

Consider the following encryption scheme for the message space Z23.

• Gen: Sample two elements a
$← Z23 and b

$← Z23.

• Enc((a, b),m) : Output c = a ·m+ b mod 23.

• Dec((a, b), c) : Compute m = (c− b) · a−1 mod 23 if a is invertible. Otherwise, output
error.

Show the following.

1. Prove that for any message m ∈ Z23,

Pr[Dec(K,Enc(K,m)) = m] =
22

23

2. Prove that this is 2-time secure.

1



CS 171, Spring 2024 Prof. Sanjam Garg

3. Getting Adversarial

Alice the Frog is very excited to share her new encryption scheme with you. You are re-
sponsible for convincing her it is insecure. The objective of this question is to familiarize
you with the security framework of computational indistinguishibility. Download the zip file
at eecs171.com/assets/homework/hw2.zip. Fill in the TODOs and upload your completed
scheme2.py and adversary.py to Gradescope. You are provided with 5 files:

• scheme1.py specifies Alice’s encryption scheme. Do not change this code.

• scheme2.py is where you should write the decryption scheme corresponding to the
encryption scheme in scheme1.py.

• correctness.py provides you with a basic sanity test to confirm that the decryption
scheme you wrote successfully recovers a plaintext encrypted with Alice’s encryption
scheme. Typically, we require that correctness is enforced for every message, but here,
we are only checking for random messages.

• security.py contains the computational indistinguishibility security game which in-
vokes the adversary. Typically, we require that the adversary succeeds with probability
only non-negligibly better than 1/2, but here, we are checking that the adversary suc-
ceeds with probability 1.

• adversary.py is where you will write the adversarial code which is invoked by security.py
in the security game. As shown in the skeleton code, note that the adversary is called
twice.

Note: When making your submission, highlight both files and compress them directly, rather
than zipping a folder containing the files.

2


