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CS 171: Problem Set 3
Due Date: February 15th, 2024 at 8:59pm via Gradescope

1. Pseudorandom Functions

Let f : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function (PRF). For the functions f ′

below, either prove that f ′ is a PRF (for all choices of f), or prove that f ′ is not a PRF.

(a) f ′
k(x) := fk(0||x)||fk(1||x).

(b) f ′
k(x) := fk(0||x)||fk(x||1).

Solution

(a) Yes, f ′ is a PRF. Suppose for the purpose of contradiction that f ′ is not a PRF. Then,
there exists a PPT A that breaks the PRF security of f ′. Construct PPT B using A to
break the PRF security of f as follows: B runs A internally. To answer A’s queries for
x, B queries the oracle (or challenger) with input 0||x and 1||x to get back y0 and y1. B
then responds y0||y1 to A. Finally, B outputs whatever A outputs.

By definition, B querying fk(·) gives A access to f ′
k(·). If B is querying a random function

F : {0, 1}n → {0, 1}n, this gives A access to a random function F ′ : {0, 1}n−1 → {0, 1}2n,
where F ′ is defined as F ′(x) = F (0||x)||F (1||x) (this defines a one-to-one mapping from
random F to random F ′). Therefore,∣∣∣Pr[Bfk(·)(1n) = 1]− Pr[BF (·)(1n) = 1]

∣∣∣ = ∣∣∣Pr[Af ′
k(·)(1n−1) = 1]− Pr[AF ′(·)(1n−1) = 1]

∣∣∣
≥ nonnegl(n)

Hence B breaks the PRF security of f , contradiction.

(b) No. Construct A to break f ′: it queries for x = 0 . . . 0 and x = 0 . . . 01.

2. Weak CPA Security

Consider a weaker definition of CPA security where in the indistinguishability experiment
the adversary A is not given oracle access to Enck(·) after choosing m0,m1. That is, A can
only query Enck(·) in phase 1, but not in phase 2. We call this definition weak-CPA-security.
Prove that weak-CPA-security is equivalent to CPA-security (i.e., Definition 3.22 in the text-
book).

Hint: Begin by showing via a hybrid argument that any A interacting in the usual CPA game
cannot distinguish whether its phase 2 queries are answered honestly (that is, if the response
to the query m is Enck(m) or an encryption of 0; Enck(0)).

Solution One of the directions is easy to see. We will show that weak-CPA-security
implies CPA security.
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Consider an encryption scheme (Gen,Enc,Dec) for message space M that is weak-CPA
secure. We will now show that it is CPA secure via a hybrid argument. Specifically, we will
define a sequence of hybrids starting with the hybrid which corresponds to the CPA exper-
iment with the bit b = 0 and end with a hybrid which corresponds to the CPA experiment
with the bit b = 1. We will show that each of the intermediate hybrids are indistinguishable
from the weak CPA security of the encryption scheme.

Hyb0 : This corresponds to the standard CPA experiment where the bit b = 0. More formally,
for any adversary A,

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a pair of messages
m0,m1.

3. c∗ is generated as Enck(m0).

4. The adversary A continues to have oracle access to Enck(·) and outputs a bit b′.

5. The output of the experiment is defined to be b′.

We now give the next hybrid.

Hyb1 : This is identical to the previous hybrid except that the last query to the encryption
oracle (say on a message m) in Phase-2 is answered as Enck(m

∗) where m∗ is an arbitrary
message in M. More formally, for any adversary A,

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a pair of messages
m0,m1.

3. c∗ is generated as Enck(m0).

4. The adversary A continues to have oracle access to Enck(·) except that for the last
query on a message m ∈ M, we answer it as Enck(m

∗) for some arbitrary m∗ ∈ M.
The adversary outputs b′

5. The output of the experiment is defined to be b′.

More generally, we define Hybj as follows:

Hybj :

1. A key k is generated by running Gen(1n).

2. The adversary A on input 1n and oracle access to Enck(·) produces a pair of messages
m0,m1 ∈ M.

3. c∗ is generated as Enck(m0).
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4. The adversary A continues to have oracle access to Enck(·) except that for the last
j queries to the encryption oracle, we answer them as independent encryptions of m∗.
The adversary outputs b′

5. The output of the experiment is defined to be b′.

We now show that for any j ∈ [q] where q is the number of queries that adversary makes in
phase-2, Hybj is computationally indistinguishable to Hybj−1.

Claim 0.1 Assume that (Gen,Enc,Dec) satisfies the weak CPA security definition. Then,
for any adversary A and j ∈ [r], there exists a negligible function negl(·)

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1] ≤ negl(n)

Proof Assume for the sake of contradiction that there exists an adversary A and j ∈ [r]
such for every negligible function negl(·),

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1] ≥ negl(n)

We will now use such an adversary A and the corresponding j, to construct an adversary B
against the weak CPA security definition of (Gen,Enc,Dec). We now give the description of
B.

Description of B.

1. B on input 1n, starts running A on input 1n.

2. Phase-1 oracle queries. For every query that A makes to the the encryption oracle
in phase-1, B answers them using its own encryption oracle. Specifically, for every
message m that A queries to Enck(·) oracle, B submits m as the message to its Enck(·)
oracle and obtains the response. It forwards this response to A.

3. Challenge Messages. A now submits two messages m0,m1. B queries its encryption
oracle on m0 and obtains the response and gives it to A.

4. Phase-2 oracle queries. For every query except that last j queries that A makes
to the encryption oracle, B answers them exactly as in phase-1. When the A asks its
(q−j+1)-th query on a message m, B does the following. It makes (j−1) queries to its
encryption oracle on m∗ and obtains the corresponding ciphertexts. It then produces
(m,m∗) as the challenge messages to the weak CPA security challenger and obtains c∗

as the challenge ciphertext. It returns c∗ as the response to the (q − j + 1)-th query.
For the last (j − 1) queries, it uses the encryptions obtained on m∗ to answer them.

5. A finally outputs a bit b′ and B outputs this bit.

Now, note that if c∗ is an encryption of the message m, then the view of A is identically
distributed to Hybj−1. On the other hand, if c∗ was an encryption of the message m∗, then
the view of A is identically distributed to Hybj . Thus, if for every negligible function,

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1] ≥ negl(n)
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then, for every negligible function negl(·)

Pr[PrivKWcpa
B,Π = 1] ≥ 1/2 + negl(n)

and this contradicts the weak CPA security of Π = (Gen,Enc,Dec).

|Pr[Hyb0 outputs 1]− Pr[Hybq outputs 1]| ≤
∑
j∈[q]

|Pr[Hybj−1 outputs 1]− Pr[Hybj outputs 1]|

≤ q · negl(n) (from Claim 0.1)

= negl′(n)

Now, notice that in Hybq, all the phase two queries of A are answered with encryptions of
an arbitrary message m∗. Thus, via an identical argument as in Claim 0.1, we can show that
Hybq is computationally indistinguishable to Hyb∗ where the challenge ciphertext that was
given to A is an encryption of m1. Now, again via a same argument as before, we can show
that Hyb∗ is computationally indistinguishable to the standard CPA security game where
b = 1. Thus, (Gen,Enc,Dec) is standard CPA secure.

3. Modes of operations are not CCA-Secure

Show that the CBC and CTR modes of encryption are not CCA-secure.

Solution

1. CBC: Define an adversary A that outputs the messages m0 = 0n and m1 = 1n to the
challenger, and receives a challenge ciphertext (IV, c). Note that for CBC mode, we
have c = Fk(IV ⊕mb). The adversary then issues a decryption query for the ciphertext
(0n, c). This is a valid query since IV ̸= 0n with overwhelming probability.
Now, the result for this query is m′ = F−1

k (c)⊕ 0n which turns out to just be IV . The
adversary then computes m′⊕ IV – this is either m0 or m1, which allows the adversary
to guess the correct bit.

2. CTR: Define an adversary A that outputs the messages m0 = 0n and m1 = 1n to
the challenger, and receives a challenge ciphertext (IV, c). Note that for CTR mode,
we have c = Fk(IV + 1) ⊕ mb. The adversary then issues a decryption query for the
ciphertext (IV, 0n). This is a valid query since c ̸= 0n with overwhelming probability.
Now, the result for this query is m′ = Fk(IV + 1) ⊕ 0n, which turns out to just be
Fk(IV + 1). The adversary then computes m′ ⊕ c – this is either m0 or m1, which
allows the adversary to guess the correct bit.
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