CS 171: Problem Set 3

Due Date: February 15th, 2024 at 8:59pm via Gradescope

1. Pseudorandom Functions

Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function (PRF). For the functions f' below, either prove that f' is a PRF (for all choices of f), or prove that f' is not a PRF.

- (a) $f'_k(x) := f_k(0||x)||f_k(1||x)$.
- (b) $f'_k(x) := f_k(0||x)||f_k(x||1).$

Solution

(a) Yes, f' is a PRF. Suppose for the purpose of contradiction that f' is not a PRF. Then, there exists a PPT \mathcal{A} that breaks the PRF security of f'. Construct PPT \mathcal{B} using \mathcal{A} to break the PRF security of f as follows: \mathcal{B} runs \mathcal{A} internally. To answer \mathcal{A} 's queries for x, \mathcal{B} queries the oracle (or challenger) with input 0||x and 1||x to get back y_0 and y_1 . \mathcal{B} then responds $y_0||y_1$ to \mathcal{A} . Finally, \mathcal{B} outputs whatever \mathcal{A} outputs.

By definition, \mathcal{B} querying $f_k(\cdot)$ gives \mathcal{A} access to $f'_k(\cdot)$. If \mathcal{B} is querying a random function $F: \{0,1\}^n \to \{0,1\}^n$, this gives \mathcal{A} access to a random function $F': \{0,1\}^{n-1} \to \{0,1\}^{2n}$, where F' is defined as F'(x) = F(0||x|||F(1||x)) (this defines a one-to-one mapping from random F to random F'). Therefore,

$$\left| \Pr[\mathcal{B}^{f_k(\cdot)}(1^n) = 1] - \Pr[\mathcal{B}^{F(\cdot)}(1^n) = 1] \right| = \left| \Pr[\mathcal{A}^{f'_k(\cdot)}(1^{n-1}) = 1] - \Pr[\mathcal{A}^{F'(\cdot)}(1^{n-1}) = 1] \right|$$

$$\geq \text{nonnegl}(n)$$

Hence \mathcal{B} breaks the PRF security of f, contradiction.

(b) No. Construct \mathcal{A} to break f': it queries for $x = 0 \dots 0$ and $x = 0 \dots 01$.

2. Weak CPA Security

Consider a weaker definition of CPA security where in the indistinguishability experiment the adversary \mathcal{A} is not given oracle access to $\mathsf{Enc}_k(\cdot)$ after choosing m_0, m_1 . That is, \mathcal{A} can only query $\mathsf{Enc}_k(\cdot)$ in phase 1, but not in phase 2. We call this definition weak-CPA-security. Prove that weak-CPA-security is equivalent to CPA-security (i.e., Definition 3.22 in the textbook).

Hint: Begin by showing via a hybrid argument that any A interacting in the usual CPA game cannot distinguish whether its phase 2 queries are answered honestly (that is, if the response to the query m is $Enc_k(m)$ or an encryption of 0; $Enc_k(0)$).

Solution One of the directions is easy to see. We will show that weak-CPA-security implies CPA security.

Consider an encryption scheme (Gen, Enc, Dec) for message space \mathcal{M} that is weak-CPA secure. We will now show that it is CPA secure via a hybrid argument. Specifically, we will define a sequence of hybrids starting with the hybrid which corresponds to the CPA experiment with the bit b=0 and end with a hybrid which corresponds to the CPA experiment with the bit b=1. We will show that each of the intermediate hybrids are indistinguishable from the weak CPA security of the encryption scheme.

 $\underline{\mathsf{Hyb}_0}$: This corresponds to the standard CPA experiment where the bit b=0. More formally, for any adversary \mathcal{A} ,

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} on input 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$ produces a pair of messages m_0, m_1 .
- 3. c^* is generated as $\operatorname{Enc}_k(m_0)$.
- 4. The adversary A continues to have oracle access to $\mathsf{Enc}_k(\cdot)$ and outputs a bit b'.
- 5. The output of the experiment is defined to be b'.

We now give the next hybrid.

 $\overline{\text{Hyb}_1}$: This is identical to the previous hybrid except that the last query to the encryption oracle (say on a message m) in Phase-2 is answered as $\text{Enc}_k(m^*)$ where m^* is an arbitrary message in \mathcal{M} . More formally, for any adversary \mathcal{A} ,

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} on input 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$ produces a pair of messages m_0, m_1 .
- 3. c^* is generated as $\operatorname{Enc}_k(m_0)$.
- 4. The adversary \mathcal{A} continues to have oracle access to $\mathsf{Enc}_k(\cdot)$ except that for the last query on a message $m \in \mathcal{M}$, we answer it as $\mathsf{Enc}_k(m^*)$ for some arbitrary $m^* \in \mathcal{M}$. The adversary outputs b'
- 5. The output of the experiment is defined to be b'.

More generally, we define Hyb_i as follows:

$\mathsf{Hyb}_j:$

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} on input 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$ produces a pair of messages $m_0, m_1 \in \mathcal{M}$.
- 3. c^* is generated as $\operatorname{Enc}_k(m_0)$.

- 4. The adversary \mathcal{A} continues to have oracle access to $\mathsf{Enc}_k(\cdot)$ except that for the last j queries to the encryption oracle, we answer them as independent encryptions of m^* . The adversary outputs b'
- 5. The output of the experiment is defined to be b'.

We now show that for any $j \in [q]$ where q is the number of queries that adversary makes in phase-2, Hyb_j is computationally indistinguishable to Hyb_{j-1} .

Claim 0.1 Assume that (Gen, Enc, Dec) satisfies the weak CPA security definition. Then, for any adversary A and $j \in [r]$, there exists a negligible function $negl(\cdot)$

$$|\Pr[\mathsf{Hyb}_{j-1} \ outputs \ \mathit{1}] - \Pr[\mathsf{Hyb}_{j} \ outputs \ \mathit{1}] \leq \mathsf{negl}(n)$$

Proof Assume for the sake of contradiction that there exists an adversary \mathcal{A} and $j \in [r]$ such for every negligible function $\mathsf{negl}(\cdot)$,

$$|\Pr[\mathsf{Hyb}_{j-1} \text{ outputs } 1] - \Pr[\mathsf{Hyb}_{j} \text{ outputs } 1] \ge \mathsf{negl}(n)$$

We will now use such an adversary \mathcal{A} and the corresponding j, to construct an adversary \mathcal{B} against the weak CPA security definition of (Gen, Enc, Dec). We now give the description of \mathcal{B} .

Description of \mathcal{B} .

- 1. \mathcal{B} on input 1^n , starts running \mathcal{A} on input 1^n .
- 2. Phase-1 oracle queries. For every query that \mathcal{A} makes to the the encryption oracle in phase-1, \mathcal{B} answers them using its own encryption oracle. Specifically, for every message m that \mathcal{A} queries to $\mathsf{Enc}_k(\cdot)$ oracle, \mathcal{B} submits m as the message to its $\mathsf{Enc}_k(\cdot)$ oracle and obtains the response. It forwards this response to \mathcal{A} .
- 3. Challenge Messages. \mathcal{A} now submits two messages m_0, m_1 . \mathcal{B} queries its encryption oracle on m_0 and obtains the response and gives it to \mathcal{A} .
- 4. **Phase-2 oracle queries.** For every query except that last j queries that \mathcal{A} makes to the encryption oracle, \mathcal{B} answers them exactly as in phase-1. When the \mathcal{A} asks its (q-j+1)-th query on a message m, \mathcal{B} does the following. It makes (j-1) queries to its encryption oracle on m^* and obtains the corresponding ciphertexts. It then produces (m, m^*) as the challenge messages to the weak CPA security challenger and obtains c^* as the challenge ciphertext. It returns c^* as the response to the (q-j+1)-th query. For the last (j-1) queries, it uses the encryptions obtained on m^* to answer them.
- 5. \mathcal{A} finally outputs a bit b' and \mathcal{B} outputs this bit.

Now, note that if c^* is an encryption of the message m, then the view of \mathcal{A} is identically distributed to Hyb_{j-1} . On the other hand, if c^* was an encryption of the message m^* , then the view of \mathcal{A} is identically distributed to Hyb_j . Thus, if for every negligible function,

$$|\Pr[\mathsf{Hyb}_{j-1} \text{ outputs } 1] - \Pr[\mathsf{Hyb}_{j} \text{ outputs } 1] \geq \mathsf{negl}(n)$$

then, for every negligible function $negl(\cdot)$

$$\Pr[PrivK_{\mathcal{B},\Pi}^{Wcpa}=1] \geq 1/2 + \mathsf{negl}(n)$$

and this contradicts the weak CPA security of $\Pi = (Gen, Enc, Dec)$.

$$\begin{split} |\Pr[\mathsf{Hyb}_0 \text{ outputs } 1] - \Pr[\mathsf{Hyb}_q \text{ outputs } 1]| &\leq \sum_{j \in [q]} |\Pr[\mathsf{Hyb}_{j-1} \text{ outputs } 1] - \Pr[\mathsf{Hyb}_j \text{ outputs } 1]| \\ &\leq q \cdot \mathsf{negl}(n) \text{ (from Claim } 0.1) \\ &= \mathsf{negl'}(n) \end{split}$$

Now, notice that in Hyb_q , all the phase two queries of \mathcal{A} are answered with encryptions of an arbitrary message m^* . Thus, via an identical argument as in Claim 0.1, we can show that Hyb_q is computationally indistinguishable to Hyb^* where the challenge ciphertext that was given to \mathcal{A} is an encryption of m_1 . Now, again via a same argument as before, we can show that Hyb^* is computationally indistinguishable to the standard CPA security game where b=1. Thus, (Gen, Enc, Dec) is standard CPA secure.

3. Modes of operations are not CCA-Secure

Show that the CBC and CTR modes of encryption are not CCA-secure.

Solution

- 1. **CBC:** Define an adversary \mathcal{A} that outputs the messages $m_0 = 0^n$ and $m_1 = 1^n$ to the challenger, and receives a challenge ciphertext (IV, c). Note that for CBC mode, we have $c = F_k(IV \oplus m_b)$. The adversary then issues a decryption query for the ciphertext $(0^n, c)$. This is a valid query since $IV \neq 0^n$ with overwhelming probability. Now, the result for this query is $m' = F_k^{-1}(c) \oplus 0^n$ which turns out to just be IV. The adversary then computes $m' \oplus IV$ this is either m_0 or m_1 , which allows the adversary to guess the correct bit.
- 2. **CTR:** Define an adversary \mathcal{A} that outputs the messages $m_0 = 0^n$ and $m_1 = 1^n$ to the challenger, and receives a challenge ciphertext (IV, c). Note that for CTR mode, we have $c = F_k(IV + 1) \oplus m_b$. The adversary then issues a decryption query for the ciphertext $(IV, 0^n)$. This is a valid query since $c \neq 0^n$ with overwhelming probability. Now, the result for this query is $m' = F_k(IV + 1) \oplus 0^n$, which turns out to just be $F_k(IV + 1)$. The adversary then computes $m' \oplus c$ this is either m_0 or m_1 , which allows the adversary to guess the correct bit.

4