CS 171: Problem Set 4

Due Date: February 29th, 2024 at 8:59pm via Gradescope

1. Negligible and Non-Negligible Functions (10 points)

Define functions $f, g: \mathbb{N} \to \mathbb{R}_{\geq 0}$, and let $g(n) = 2^{-f(n)}$.

- 1. Prove that if $f(n) = \omega(\log n)$, then g(n) is negligible. Give a fully rigorous proof.
- 2. Prove that if $f(n) = O(\log n)$, then g(n) is non-negligible. Give a fully rigorous proof.
- 3. Identify which of the following functions are negligible. There may be multiple negligible functions. No explanation is necessary for this part:
 - (a) $g_1(n) = 2^{-\sqrt{n}}$
 - (b) $g_2(n) = 2^{-(\log n)^2}$
 - (c) $g_3(n) = 2^{-\sqrt{\log n}}$

Solution

1. Claim 0.1 If $f(n) = \omega(\log n)$, then g(n) is negligible.

Proof If $f(n) = \omega(\log n)$, then for all c > 0, there exists an $N \in \mathbb{N}$ such that for all n > N,

$$f(n) > c \log n$$

Equivalently, that means for all c > 0, there exists an $N \in \mathbb{N}$ such that for all n > N,

$$g(n) < 2^{-c\log n} = n^{-c}$$

Therefore, g is negligible.

2. Claim 0.2 If $f(n) = O(\log n)$, then g(n) is non-negligible.

Proof If $f(n) = O(\log n)$, then there exists a c > 0 such that there exists an $N \in \mathbb{N}$ such that for all n > N,

$$f(n) \le c \log n$$

Equivalently, that means there exists a c > 0 such that there exists an $N \in \mathbb{N}$ such that for all n > N,

$$g(n) \ge 2^{-c\log n} = n^{-c}$$

Therefore, g is non-negligible.

3. g_1 and g_2 are negligible because $\sqrt{n} = \omega(\log n)$ and $(\log n)^2 = \omega(\log n)$. g_3 is non-negligible because $\sqrt{\log n} = O(\log n)$.

2. Two Versions of CPA security (10 points)

There are two common definitions of CPA security, which are given in definitions 0.3 and 0.4 below¹. Prove that definitions 0.3 and 0.4 are equivalent, i.e. if a scheme is secure under one definition, then it is secure under the other definition.

Definition 0.3 Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme and let \mathcal{A} be an adversary for the CPA security game. Define the CPA security game as follows:

$G_{\mathcal{A},\Pi}(n)$:

- 1. The challenger samples a key $k \leftarrow \text{Gen}(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\text{Enc}(k, \cdot)$, and outputs a pair of messages (m_0, m_1) with $|m_0| = |m_1|$.
- 3. The challenger samples a bit $b \leftarrow \{0,1\}$, and computes the ciphertext $c \leftarrow \text{Enc}(k, m_b)$. Then they give c to A.
- 4. A continues to have oracle access to $Enc(k, \cdot)$ and outputs a bit b'.
- 5. The output of the game is 1 if b' = b, and 0 otherwise.

We say that the encryption scheme Π is CPA-secure if for all probabilistic polynomial-time (PPT) adversaries \mathcal{A} , there is a negligible function negl such that

$$\Pr\left[G_{\mathcal{A},\Pi}(n)=1\right] \le \frac{1}{2} + \mathsf{negl}(n)$$

In definition 0.4 below, any changes from definition 0.3 are shown in red.

Definition 0.4 Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme and let \mathcal{A} be an adversary for the CPA security game. Define the CPA security game as follows:

$H_{\mathcal{A},\Pi}(n, b)$:

- 1. The challenger samples a key $k \leftarrow \text{Gen}(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\text{Enc}(k, \cdot)$, and outputs a pair of messages (m_0, m_1) with $|m_0| = |m_1|$.
- 3. The challenger computes the ciphertext $c \leftarrow \mathsf{Enc}(k, m_b)$. Then they give c to \mathcal{A} .
- 4. A continues to have oracle access to $Enc(k, \cdot)$ and outputs a bit b'.
- 5. The output of the game is b'.

We say that the encryption scheme Π is CPA-secure if for all probabilistic polynomial-time (PPT) adversaries \mathcal{A} , there is a negligible function negl such that

 $\left|\Pr\left[H_{\mathcal{A},\Pi}(n,0)=1\right]-\Pr\left[H_{\mathcal{A},\Pi}(n,1)=1\right]\right| \le \mathsf{negl}(n)$

¹These are analogous to the two definitions of security for EAV security (lecture 3, slides 19-20) and PRGs (lecture 4, slides 8-9)

Solution

1. First, note that

$$\Pr[G_{\mathcal{A},\Pi}(n) = 1] = \Pr[b = 0] \cdot \Pr[H_{\mathcal{A},\Pi}(n,0) = 0] + \Pr[b = 1] \cdot \Pr[H_{\mathcal{A},\Pi}(n,1) = 1]$$
$$= \frac{1}{2} \cdot \left(1 - \Pr[H_{\mathcal{A},\Pi}(n,0) = 1]\right) + \frac{1}{2} \cdot \Pr[H_{\mathcal{A},\Pi}(n,1) = 1]$$
$$= \frac{1}{2} + \frac{1}{2} \cdot \left(\Pr[H_{\mathcal{A},\Pi}(n,1) = 1] - \Pr[H_{\mathcal{A},\Pi}(n,0) = 1]\right)$$

2. Claim 0.5 Definition 0.4 implies definition 0.3.

Proof If for all PPT adversaries \mathcal{A} , there exists a negligible function negl such that

$$\Pr\left[H_{\mathcal{A},\Pi}(n,0)=1\right] - \Pr\left[H_{\mathcal{A},\Pi}(n,1)=1\right] \Big| \le \mathsf{negl}(n)$$

then

$$\Pr\left[G_{\mathcal{A},\Pi}(n)=1\right] \le \frac{1}{2} + \frac{\mathsf{negl}(n)}{2}$$

Note that $\frac{\operatorname{\mathsf{negl}}(n)}{2}$ is still a negligible function. Then for any PPT adversary \mathcal{A} , there exists a negligible function $\operatorname{\mathsf{negl}}_1(n) := \frac{\operatorname{\mathsf{negl}}(n)}{2}$ such that $\Pr[G_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \operatorname{\mathsf{negl}}_1(n)$.

3. Claim 0.6 Definition 0.3 implies definition 0.4.

Proof

(a) If for all PPT adversaries \mathcal{A} , there exists a negligible function $\mathsf{negl}_{\mathcal{A}}$ such that

$$\Pr\left[G_{\mathcal{A},\Pi}(n)=1\right] \leq \frac{1}{2} + \mathsf{negl}_{\mathcal{A}}(n)$$

then

$$\Pr\left[H_{\mathcal{A},\Pi}(n,1)=1\right] - \Pr\left[H_{\mathcal{A},\Pi}(n,0)=1\right] \le 2 \cdot \mathsf{negl}_{\mathcal{A}}(n)$$

Note that $2 \cdot \operatorname{negl}_{\mathcal{A}}(n)$ is still a negligible function.

(b) Next, we'll show that

$$\Pr\left[H_{\mathcal{A},\Pi}(n,0)=1\right] - \Pr\left[H_{\mathcal{A},\Pi}(n,1)=1\right] \le 2 \cdot \mathsf{negl}_{\mathcal{B}}(n)$$

for some negligible function $\operatorname{negl}_{\mathcal{B}}$. Let us define a new PPT adversary \mathcal{B} that runs the same algorithm as \mathcal{A} , except that when \mathcal{A} outputs b', \mathcal{B} outputs $b' \oplus 1$. Since \mathcal{B} is a PPT adversary, we know that there exists a negligible function $\operatorname{negl}_{\mathcal{B}}$ such that

$$\Pr\left[H_{\mathcal{B},\Pi}(n,1)=1\right] - \Pr\left[H_{\mathcal{B},\Pi}(n,0)=1\right] \le 2 \cdot \mathsf{negl}_{\mathcal{B}}(n)$$

Therefore

$$\Pr\left[H_{\mathcal{A},\Pi}(n,0)=1\right] - \Pr\left[H_{\mathcal{A},\Pi}(n,1)=1\right] = \Pr\left[H_{\mathcal{B},\Pi}(n,1)=1\right] - \Pr\left[H_{\mathcal{B},\Pi}(n,0)=1\right]$$
$$\leq 2 \cdot \mathsf{negl}_{\mathcal{B}}(n)$$

(c) Finally, let $\mathsf{negl}_1(n) = 2 \cdot \mathsf{negl}_{\mathcal{A}}(n) + 2 \cdot \mathsf{negl}_{\mathcal{B}}(n)$. Note that negl_1 is a negligible function, and $2 \cdot \mathsf{negl}_{\mathcal{A}}(n) \leq \mathsf{negl}_1(n)$, and $2 \cdot \mathsf{negl}_{\mathcal{B}}(n) \leq \mathsf{negl}_1(n)$.

We've shown that for any PPT adversary $\mathcal A,$ there exists a negligble function negl_1 such that

$$\left| \Pr\left[H_{\mathcal{A},\Pi}(n,0) = 1 \right] - \Pr\left[H_{\mathcal{A},\Pi}(n,1) = 1 \right] \right| \le \mathsf{negl}_1(n)$$

3. Feistel Network (10 points)

A Feistel network is used to construct a pseudorandom permutation F given a pseudorandom function f that is not necessarily a permutation². However, if f is not pseudorandom, then F is potentially not pseudorandom either.

Consider the following three-round Feistel network given in definition 0.7 below³.

Definition 0.7 (Three-Round Feistel Network F)

- 1. Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$.
- 2. Inputs: Let F take as input a key $k \in \{0,1\}^{3n}$ and an input $x \in \{0,1\}^{2n}$, which are parsed as:

$$k = (k^1, k^2, k^3) \in \{0, 1\}^n \times \{0, 1\}^n \times \{0, 1\}^n$$
$$x = (L_0, R_0) \in \{0, 1\}^n \times \{0, 1\}^n$$

3. Computation:

- (a) F computes $L_1 := R_0$ and $R_1 := L_0 \oplus f(k^1, R_0)$.
- (b) F computes $L_2 := R_1$ and $R_2 := L_1 \oplus f(k^2, R_1)$.
- (c) F computes $L_3 := R_2$ and $R_3 := L_2 \oplus f(k^3, R_2)$.
- (d) F outputs (L_3, R_3) .

Suppose that there was a flaw in the design of f so that for all keys k and all inputs x, the first bit of f(k, x) equals the first bit of x. Show that there exists some efficient adversary \mathcal{A} that can break the pseudorandom permutation security of F by making only a single query to F.

Solution

1. Let a_0 be the first bit of L_0 , and let b_0 be the first bit of R_0 . Let $a_1, a_2, a_3, b_1, b_2, b_3$ be defined analogously. Then these bits will have the following values:

$$(a_1, b_1) = (b_0, (a_0 \oplus b_0))$$
$$(a_2, b_2) = ((a_0 \oplus b_0), a_0)$$
$$(a_3, b_3) = (a_0, b_0)$$

- 2. In other words, two specific output bits of F, (a_3, b_3) , are equal to two specific input bits of F, (a_0, b_0) . On any given input, the probability that a uniformly random permutation will produce an output pair with this property is approximately 1/4.
- 3. Now we can construct our distinguisher \mathcal{A} that breaks the pseudorandom permutation security of F. A will query F on an arbitrary input and check whether $(a_3, b_3) = (a_0, b_0)$. If so, \mathcal{A} ouputs 1; if not, \mathcal{A} outputs 0.

²For more details, see Katz & Lindell, 3rd edition, sections 7.2.2 and 8.6.

³This definition is adapted from Katz & Lindell, 3rd edition, construction 8.23.

4. The distinguishing advantage of \mathcal{A} is approximately 1 - 1/4 = .75, which is non-negligible. Therefore, \mathcal{A} breaks the PRP security of F.