
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 4
Due Date: February 29th, 2024 at 8:59pm via Gradescope

1. Negligible and Non-Negligible Functions (10 points)

Define functions f, g : N→ R≥0, and let g(n) = 2−f(n).

1. Prove that if f(n) = ω(log n), then g(n) is negligible. Give a fully rigorous proof.

2. Prove that if f(n) = O(log n), then g(n) is non-negligible. Give a fully rigorous proof.

3. Identify which of the following functions are negligible. There may be multiple negligible
functions. No explanation is necessary for this part:

(a) g1(n) = 2−
√
n

(b) g2(n) = 2−(logn)2

(c) g3(n) = 2−
√
logn

Solution

1. Claim 0.1 If f(n) = ω(log n), then g(n) is negligible.

Proof If f(n) = ω(log n), then for all c > 0, there exists an N ∈ N such that for all
n > N ,

f(n) > c log n

Equivalently, that means for all c > 0, there exists an N ∈ N such that for all n > N ,

g(n) < 2−c logn = n−c

Therefore, g is negligible.

2. Claim 0.2 If f(n) = O(log n), then g(n) is non-negligible.

Proof If f(n) = O(log n), then there exists a c > 0 such that there exists an N ∈ N
such that for all n > N ,

f(n) ≤ c log n

Equivalently, that means there exists a c > 0 such that there exists an N ∈ N such that
for all n > N ,

g(n) ≥ 2−c logn = n−c

Therefore, g is non-negligible.

3. g1 and g2 are negligible because
√
n = ω(log n) and (log n)2 = ω(log n). g3 is non-

negligible because
√
log n = O(log n).
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2. Two Versions of CPA security (10 points)

There are two common definitions of CPA security, which are given in definitions 0.3 and 0.4
below1. Prove that definitions 0.3 and 0.4 are equivalent, i.e. if a scheme is secure under one
definition, then it is secure under the other definition.

Definition 0.3 Let Π = (Gen,Enc,Dec) be an encryption scheme and let A be an adversary
for the CPA security game. Define the CPA security game as follows:

GA,Π(n):

1. The challenger samples a key k ← Gen(1n).

2. The adversary A is given input 1n and oracle access to Enc(k, ·), and outputs a pair of
messages (m0,m1) with |m0| = |m1|.

3. The challenger samples a bit b ← {0, 1}, and computes the ciphertext c ← Enc(k,mb).
Then they give c to A.

4. A continues to have oracle access to Enc(k, ·) and outputs a bit b′.

5. The output of the game is 1 if b′ = b, and 0 otherwise.

We say that the encryption scheme Π is CPA-secure if for all probabilistic polynomial-time
(PPT) adversaries A, there is a negligible function negl such that

Pr [GA,Π(n) = 1] ≤ 1

2
+ negl(n)

In definition 0.4 below, any changes from definition 0.3 are shown in red.

Definition 0.4 Let Π = (Gen,Enc,Dec) be an encryption scheme and let A be an adversary
for the CPA security game. Define the CPA security game as follows:

HA,Π(n, b):

1. The challenger samples a key k ← Gen(1n).

2. The adversary A is given input 1n and oracle access to Enc(k, ·), and outputs a pair of
messages (m0,m1) with |m0| = |m1|.

3. The challenger computes the ciphertext c← Enc(k,mb). Then they give c to A.

4. A continues to have oracle access to Enc(k, ·) and outputs a bit b′.

5. The output of the game is b′.

We say that the encryption scheme Π is CPA-secure if for all probabilistic polynomial-time
(PPT) adversaries A, there is a negligible function negl such that∣∣Pr [HA,Π(n, 0) = 1]− Pr [HA,Π(n, 1) = 1]

∣∣ ≤ negl(n)
1These are analogous to the two definitions of security for EAV security (lecture 3, slides 19-20) and PRGs

(lecture 4, slides 8-9)
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Solution

1. First, note that

Pr [GA,Π(n) = 1] = Pr[b = 0] · Pr [HA,Π(n, 0) = 0] + Pr[b = 1] · Pr [HA,Π(n, 1) = 1]

=
1

2
·
(
1− Pr [HA,Π(n, 0) = 1]

)
+

1

2
· Pr [HA,Π(n, 1) = 1]

=
1

2
+

1

2
·
(
Pr [HA,Π(n, 1) = 1]− Pr [HA,Π(n, 0) = 1]

)
2. Claim 0.5 Definition 0.4 implies definition 0.3.

Proof If for all PPT adversaries A, there exists a negligible function negl such that∣∣Pr [HA,Π(n, 0) = 1]− Pr [HA,Π(n, 1) = 1]
∣∣ ≤ negl(n)

then

Pr [GA,Π(n) = 1] ≤ 1

2
+

negl(n)

2

Note that negl(n)
2 is still a negligible function. Then for any PPT adversary A, there

exists a negligible function negl1(n) :=
negl(n)

2 such that Pr [GA,Π(n) = 1] ≤ 1
2+negl1(n).

3. Claim 0.6 Definition 0.3 implies definition 0.4.

Proof

(a) If for all PPT adversaries A, there exists a negligible function neglA such that

Pr [GA,Π(n) = 1] ≤ 1

2
+ neglA(n)

then
Pr [HA,Π(n, 1) = 1]− Pr [HA,Π(n, 0) = 1] ≤ 2 · neglA(n)

Note that 2 · neglA(n) is still a negligible function.

(b) Next, we’ll show that

Pr [HA,Π(n, 0) = 1]− Pr [HA,Π(n, 1) = 1] ≤ 2 · neglB(n)

for some negligible function neglB. Let us define a new PPT adversary B that runs
the same algorithm as A, except that when A outputs b′, B outputs b′ ⊕ 1. Since
B is a PPT adversary, we know that there exists a negligible function neglB such
that

Pr [HB,Π(n, 1) = 1]− Pr [HB,Π(n, 0) = 1] ≤ 2 · neglB(n)

Therefore

Pr [HA,Π(n, 0) = 1]− Pr [HA,Π(n, 1) = 1] = Pr [HB,Π(n, 1) = 1]− Pr [HB,Π(n, 0) = 1]

≤ 2 · neglB(n)
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(c) Finally, let negl1(n) = 2 · neglA(n) + 2 · neglB(n). Note that negl1 is a negligible
function, and 2 · neglA(n) ≤ negl1(n), and 2 · neglB(n) ≤ negl1(n).

We’ve shown that for any PPT adversary A, there exists a negligble function negl1
such that ∣∣Pr [HA,Π(n, 0) = 1]− Pr [HA,Π(n, 1) = 1]

∣∣ ≤ negl1(n)

4



CS 171, Spring 2024 Prof. Sanjam Garg

3. Feistel Network (10 points)

A Feistel network is used to construct a pseudorandom permutation F given a pseudorandom
function f that is not necessarily a permutation2. However, if f is not pseudorandom, then
F is potentially not pseudorandom either.

Consider the following three-round Feistel network given in definition 0.7 below3.

Definition 0.7 (Three-Round Feistel Network F )

1. Let f : {0, 1}n × {0, 1}n → {0, 1}n.

2. Inputs: Let F take as input a key k ∈ {0, 1}3n and an input x ∈ {0, 1}2n, which are
parsed as:

k = (k1, k2, k3) ∈ {0, 1}n × {0, 1}n × {0, 1}n

x = (L0, R0) ∈ {0, 1}n × {0, 1}n

3. Computation:

(a) F computes L1 := R0 and R1 := L0 ⊕ f(k1, R0).

(b) F computes L2 := R1 and R2 := L1 ⊕ f(k2, R1).

(c) F computes L3 := R2 and R3 := L2 ⊕ f(k3, R2).

(d) F outputs (L3, R3).

Suppose that there was a flaw in the design of f so that for all keys k and all inputs x, the
first bit of f(k, x) equals the first bit of x. Show that there exists some efficient adversary A
that can break the pseudorandom permutation security of F by making only a single query
to F .

Solution

1. Let a0 be the first bit of L0, and let b0 be the first bit of R0. Let a1, a2, a3, b1, b2, b3 be
defined analogously. Then these bits will have the following values:

(a1, b1) = (b0, (a0 ⊕ b0))

(a2, b2) = ((a0 ⊕ b0), a0)

(a3, b3) = (a0, b0)

2. In other words, two specific output bits of F , (a3, b3), are equal to two specific input bits
of F , (a0, b0). On any given input, the probability that a uniformly random permutation
will produce an output pair with this property is approximately 1/4.

3. Now we can construct our distinguisher A that breaks the pseudorandom permutation
security of F . A will query F on an arbitrary input and check whether (a3, b3) = (a0, b0).
If so, A ouputs 1; if not, A outputs 0.

2For more details, see Katz & Lindell, 3rd edition, sections 7.2.2 and 8.6.
3This definition is adapted from Katz & Lindell, 3rd edition, construction 8.23.
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4. The distinguishing advantage of A is approximately 1 − 1/4 = .75, which is non-
negligible. Therefore, A breaks the PRP security of F .
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