
CS 171, Spring 2021 Prof. Sanjam Garg

CS 171: Problem Set 5
Due Date: March 7th, 2024 at 8:59pm via Gradescope

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudrandom
function function F that maps {0, 1}n × {0, 1}n → {0, 1}n.

Show that each of the following MAC schemes is insecure.

1. Scheme 1:

(a) Gen(1n): Output k ← {0, 1}n.
(b) Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t := F (k,m0)||F (k,m0 ⊕m1)

(c) Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

2. Scheme 2:

(a) Gen(1n): Output k ← {0, 1}n.
(b) Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n−1. Then Mac samples

r ← {0, 1}n, and outputs

t := r||
[
F (k, r)⊕ F (k, 0||m0)⊕ F (k, 1||m1)

]
(c) Verify(k,m, t): Let m = m0||m1, where m0,m1 ∈ {0, 1}n−1, and let t = r||t′, where

r, t′ ∈ {0, 1}n. Output 1 if

t′ = F (k, r)⊕ F (k, 0||m0)⊕ F (k, 1||m1)

and output 0 otherwise.

Solution
Scheme 1:

1. Construction of an adversary A:

(a) A picks arbitrary strings m0,m1 ∈ {0, 1}n such that m0 ̸= 0n, and m0 ̸= m1.
Then A queries Mac(k, ·) on two messages:

m := m0||m0

m′ := 0n||(m0 ⊕m1)

(b) A will receive:

Mac(k,m) = F (k,m0)||F (k, 0n)

Mac(k,m′) = F (k, 0n)||F (k,m0 ⊕m1)

1

CS 171, Spring 2021 Prof. Sanjam Garg

(c) A outputs the following message-tag pair (m∗, t∗):

m∗ = m0||m1

t∗ = F (k,m0)||F (k,m0 ⊕m1)

Note that t∗ can be computed from the tags that A received previously.

2. Analysis: First, note that Verify(k,m∗, t∗) = 1 becauseMac(k,m∗) = F (k,m0)||F (k,m0⊕
m1) = t∗. Second, (m∗, t∗) is a valid output because m∗ ̸= m, and m∗ ̸= m′, so m∗ was
not previously queried.

This means that A will win the MAC security game for scheme 1 with probability 1,
so the scheme is insecure.

Scheme 2:

1. Construction of an adversary A:

(a) A picks an arbitrary message m = m0||m1, where m0,m1 ∈ {0, 1}n−1, and queries
Mac(k, ·) on m. A receives t = r||t′, where

t′ = F (k, r)⊕ F (k, 0||m0)⊕ F (k, 1||m1)

(b) Let r0 be the first bit of r, and let r′ be the remaining bits of r (i.e. r = r0||r′).
i. If r0 = 0, then A outputs:

m∗ = r′||m1

t∗ = 0||m0||t′

ii. If r0 = 1, then A outputs:

m∗ = m0||r′

t∗ = 1||m1||t′

2. We will argue that Verify(k,m∗, t∗) = 1 with certainty. Let m∗ = m∗
0||m∗

1, where
m∗

0,m
∗
1 ∈ {0, 1}n−1, and let t∗ = r∗||t∗′, where r∗, t∗′ ∈ {0, 1}n.

If r0 = 0, then

F (k, r∗)⊕ F (k, 0||m∗
0)⊕ F (k, 1||m∗

1) = F (k, 0||m0)⊕ F (k, r)⊕ F (k, 1||m1) = t′ = t∗′

so Verify(k,m∗, t∗) outputs 1.

If r0 = 1, then

F (k, r∗)⊕ F (k, 0||m∗
0)⊕ F (k, 1||m∗

1) = F (k, 1||m1)⊕ F (k, 0||m0)⊕ F (k, r) = t′ = t∗′

so Verify(k,m∗, t∗) outputs 1.

3. Next, except with negligible probability, m∗ ̸= m, so m∗ is a valid output. If r′ ̸= m0

and r′ ̸= m1, then m∗ ̸= m. This occurs with probability 1− negl(n).

4. In summary, this means that A wins the MAC security game for scheme 2 with prob-
ability 1− negl(n). Therefore, scheme 2 is insecure.

2

CS 171, Spring 2021 Prof. Sanjam Garg

2 Encrypt-Then-Authenticate

The encrypt-then-authenticate approach constructs a CCA-secure encryption scheme using
any CPA-secure encryption scheme and any strongly secure MAC.1 You will show that a
MAC with regular security will not suffice.

1. Describe a MAC MAC′ := (Gen′,Mac′,Verify′) that is secure but not strongly secure.
In your construction, you may start with a secure MAC, MAC := (Gen,Mac,Verify).

2. Prove that MAC′ is secure or cite a security proof given in discussion or lecture.2

3. Prove that when MAC′ is combined with any CPA-secure encryption scheme using
encrypt-then-authenticate, it results in an encryption scheme that is not CCA-secure.

Solution

1. Construction of MAC′:

• Gen′(1n): Run Gen(1n).

• Mac′(k,m):

(a) Compute t = Mac(k,m).

(b) Sample b← {0, 1}.
(c) Output t′ := t||b.

• Verify′(k,m, t): Let ttruncated be t with the final bit removed. Run Verify(k,m, ttruncated),
and output the result.

2. It was proven in discussion 6 that MAC′ is secure.

3. We will show that when MAC′ is used to construct an encryption scheme via encrypt-
then-authenticate, the resulting scheme is not CCA secure.

(a) In the CCA security game, the adversary can query the decryption oracle Dec(k, ·)
even after they receive their challenge ciphertext c∗, as long as they don’t query
on c∗ itself.

(b) In the encrypt-then-authenticate approach, each ciphertext c has the following
form:

c′ = Enc(kE ,m)

t = Mac(kM , c′)

c = (c′, t)

Note that if you flip the last bit of c, then the resulting ciphertext is still a valid
encryption of the same message m.

1The encrypt-then-authenticate approach is described in Katz & Lindell, 3rd edition, construction 5.6 and
also in lecture 10, slide 21.

2You don’t need to prove that MAC′ is not strongly secure.

3

CS 171, Spring 2021 Prof. Sanjam Garg

(c) Now, let us construct an adversary A that breaks the CCA security of the encryp-
tion scheme.
Description of A:
i. Don’t make any phase-I queries. Just output two challenge messages, m0 and

m1, such that m0 ̸= m1.

ii. After receiving the challenge ciphertext c∗, flip the last bit of c∗ to obtain c∗∗.
Query the decryption oracle Dec(kE , ·) on c∗∗ to obtain a message m′.

iii. If m′ = m0, then output b′ = 0. Otherwise output b′ = 1.

(d) We claim that A wins the CCA security game with probability 1.

First, A is allowed to query the decryption oracle on c∗∗ because c∗∗ ̸= c∗. Second,
c∗∗ and c∗ encrypt the same message, so m′ = mb. Then given mb, A can guess b
correctly with certainty.

4

CS 171, Spring 2021 Prof. Sanjam Garg

3 Randomized MACs

Previously we’ve dealt mainly with deterministic MACs, and here we will examine one reason
why: we will show that any randomized MAC can be converted into a deterministic MAC
using a PRF.

A randomized MAC is a scheme where Mac(k,m) is allowed to sample a uniformly
random string r each time it runs.3 A deterministic MAC is a scheme where Mac(k,m) is
a deterministic function of the inputs (k,m).

Question: Given a randomized MAC ΠR = (GenR,MacR,VerifyR), construct a determin-
istic MAC ΠD = (GenD,MacD,VerifyD), and prove that ΠD is secure.4

You may assume that ΠR takes n-bit messages and l-bit random strings, and ΠD takes n-
bit messages. In your construction, you may also use a PRF F that maps {0, 1}n×{0, 1}n →
{0, 1}l.

You may find it useful to follow the template below and fill in the blanks.5

1. Construction of ΠD:

(a) GenD(1
n): Sample k = (k1, k2)← {0, 1}n × {0, 1}n and output it.

(b) MacD(k,m): Compute

r = F (k1,m) and t = MacR(r; k2,m)

and output t.

(c) VerifyD(k,m, t): Output 1 if MacD(k,m) = t, and output 0 otherwise.

2. Claim 3.1 ΠD is a secure MAC.

Proof

(a) We will define two hybrids and show that they are indistinguishable6:

i. Hyb0 is the MAC security game MAC-forgeA,ΠD
(n):

A. Sample k ← GenD(1
n).

B. Query Phase: The adversary A gets oracle access to MacD(k, ·). Let Q be
the set of all the message queries that the adversary submits to the oracle.

C. A outputs (m∗, t∗). The challenger checks that VerifyD(k,m
∗, t∗) = 1

and m∗ /∈ Q. The output of the game is 1 if both checks passed and 0
otherwise.

ii. Hyb1 is the same as Hyb0 except that any calls to F are replaced with calls to
a uniformly random function R:

3We sometimes sharpen our notation from Mac(k,m) to Mac(r; k,m) to make the algorithm’s random input
explicit.

4The definition of security is given in Katz & Lindell, 3rd edition, definition 4.2 and in lecture 9, slide 5.
5The size of each blank box below doesn’t indicate how long your answer should be. The box just marks

an incomplete section of the proof, and your answers will sometimes be larger than the boxes.
6We’ve given more detail for the hybrids than necessary. The extra detail is shown in gray.

5

CS 171, Spring 2021 Prof. Sanjam Garg

A. Sample k ← GenD(1
n), and sample a function R uniformly at random

from the set of functions that map {0, 1}n → {0, 1}l.
B. Query Phase: Let Mac′(k,m) be the same as MacD(k,m), except any calls

to F are replaced with calls to R. Next, the adversary A gets oracle access
to Mac′(k, ·). Finally, let Q be the set of all the message queries that the
adversary submits to the oracle.

C. A outputs (m∗, t∗). The challenger checks that VerifyD(k,m
∗, t∗) = 1

and m∗ /∈ Q. The output of the game is 1 if both checks passed and 0
otherwise.

(b) Claim 3.2 For any probabilistic polynomial-time adversary A, there exists a neg-
ligible function negl such that∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]

∣∣ ≤ negl(n)

Proof

i. Overview: Assume toward contradiction that for some PPT adversary A,∣∣Pr[Hyb0 → 1] − Pr[Hyb1 → 1]
∣∣ is non-negligible. Then we will use A to

construct an adversary B that breaks the PRF security of F . This is a con-
tradiction because F is a secure PRF. Therefore, our initial assumption was
false, and in fact,

∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]
∣∣ is negligible for every PPT

adversary A.
ii. Construction of B:

A. B will run A as a subroutine and simulate Hyb0 or Hyb1.

B. In step A of the hybrid, B will not sample the key k1 – that is the PRF
challenger’s job. However, B will sample k2 ← {0, 1}n.

C. Whenever A outputs a query to MacD(k, ·) or Mac′(k, ·), B will compute
the response, which is eitherMacR(F (k1,m); k2,m) orMacR(R(m); k2,m).
This entails B querying the oracle for F (k1, ·) or R(·).

D. Finally, the output of the hybrid is a bit b, which B will output as well.

iii. Pseudorandom case: Pr[BF (k1,·) → 1] = Pr[Hyb0 → 1]. This is because when
B gets query access to F (k1, ·), they end up simulating Hyb0.

iv. Truly random case: Pr[BR(·) → 1] = Pr[Hyb1 → 1]. This is because when B
gets query access to R(·), they end up simulating Hyb1.

v. Therefore∣∣Pr[BF (k1,·) → 1]− Pr[BR(·) → 1]
∣∣ = ∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]

∣∣
which is non-negligible. This implies that B breaks the PRF security of F .
That’s a contradiction because F is secure. Therefore, our initial assumption
was false, and in fact,

∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]
∣∣ ≤ negl(n).

(c) Claim 3.3 For any probabilistic polynomial-time adversary A, there exists a neg-
ligible function negl such that

Pr[Hyb1 → 1] ≤ negl(n)

Proof

6

CS 171, Spring 2021 Prof. Sanjam Garg

Lemma 3.4 Pr[Hyb1 → 1] ≤ Pr[MAC-forgeA,ΠR
(n)→ 1]

Proof

Note: We will give full credit to answers that say that Hyb1 is the same as
MAC-forgeA,ΠR

(n), even though that isn’t exactly correct.

i. Intuition: Hyb1 is the same as MAC-forgeA,ΠR
(n) (the MAC security game for

ΠR), except that if the adversary queries the Mac oracle multiple times on
the same message, then they will receive the same tag every time.7 This is
because the function R is sampled uniformly at random, so the value of R(m)
at any given m is a uniformly random string that is independent of R(m′) for
any m ̸= m′.
Intuitively, Hyb1 is a harder game for the adversary to win because they gain
no new information after the first time they query a given message.

ii. Proof Overview: We will start with an adversary A for Hyb1, and then use
A to construct an adversary B for MAC-forgeB,ΠR

(n) with the same success
probability:

Pr[Hyb1 with A outputs 1] = Pr[MAC-forgeB,ΠR
(n) with B outputs 1]

Therefore, the maximum success probability of any adversary in Hyb1 is
less than or equal to the maximum success probability of any adversary in
MAC-forgeB,ΠR

(n).

iii. Construction of B:
A. B runs A internally.

B. From time-to-time, A will produce a query m for the Mac′(k, ·) oracle,
and B will check whether m was previously queried.

A. If not, B submits m as a query to the MacR(k2, ·) oracle to obtain
t = MacR(k2,m) and forwards t to A.

B. If so, B responds with the same value of t that was given the last time
m was queried.

C. Eventually, A outputs a pair (m∗, t∗), which B outputs as well.

iv. B correctly simulates Hyb1 because every time A queries a particular message
m, it receives the same tag in response. So with non-negligible probability, A
will output an (m∗, t∗) that wins the simulation of Hyb1.
Next, any (m∗, t∗) that wins the simulation of Hyb1 will also winMAC-forgeB,ΠR

(n),
so

Pr[Hyb1 with A outputs 1] = Pr[MAC-forgeB,ΠR
(n) with B outputs 1]

7In contrast, inMAC-forgeA,ΠR
(n), the adversary may receive different tags every time it queries a particular

message because MacR samples a fresh random string r for each query.

7

CS 171, Spring 2021 Prof. Sanjam Garg

(d) Combining the parts above, we have that

Pr[MAC-forgeA,ΠD
(n)→ 1] = Pr[Hyb0 → 1]

≤
∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]

∣∣+ Pr[Hyb1 → 1]

≤ negl1(n) + negl2(n) = negl3(n)

for some negligible functions negl1, negl2, negl3. Therefore, ΠD is secure.

8

