
CS 171, Spring 2021 Prof. Sanjam Garg

CS 171: Problem Set 5
Due Date: March 7th, 2024 at 8:59pm via Gradescope

1 Insecure Candidates for MACs

Two candidate constructions of MACs are given below. The schemes use a pseudrandom
function function F that maps {0, 1}n × {0, 1}n → {0, 1}n.

Show that each of the following MAC schemes is insecure.

1. Scheme 1:

(a) Gen(1n): Output k ← {0, 1}n.
(b) Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n. Then Mac outputs

t := F (k,m0)||F (k,m0 ⊕m1)

(c) Verify(k,m, t): Output 1 if t = Mac(k,m), and output 0 otherwise.

2. Scheme 2:

(a) Gen(1n): Output k ← {0, 1}n.
(b) Mac(k,m): Let m = m0||m1, where m0,m1 ∈ {0, 1}n−1. Then Mac samples

r ← {0, 1}n, and outputs

t := r||
[
F (k, r)⊕ F (k, 0||m0)⊕ F (k, 1||m1)

]
(c) Verify(k,m, t): Let m = m0||m1, where m0,m1 ∈ {0, 1}n−1, and let t = r||t′, where

r, t′ ∈ {0, 1}n. Output 1 if

t′ = F (k, r)⊕ F (k, 0||m0)⊕ F (k, 1||m1)

and output 0 otherwise.

1

CS 171, Spring 2021 Prof. Sanjam Garg

2 Encrypt-Then-Authenticate

The encrypt-then-authenticate approach constructs a CCA-secure encryption scheme using
any CPA-secure encryption scheme and any strongly secure MAC.1 You will show that a
MAC with regular security will not suffice.

1. Describe a MAC MAC′ := (Gen′,Mac′,Verify′) that is secure but not strongly secure.
In your construction, you may start with a secure MAC, MAC := (Gen,Mac,Verify).

2. Prove that MAC′ is secure or cite a security proof given in discussion or lecture.2

3. Prove that when MAC′ is combined with any CPA-secure encryption scheme using
encrypt-then-authenticate, it results in an encryption scheme that is not CCA-secure.

1The encrypt-then-authenticate approach is described in Katz & Lindell, 3rd edition, construction 5.6 and
also in lecture 10, slide 21.

2You don’t need to prove that MAC′ is not strongly secure.

2

CS 171, Spring 2021 Prof. Sanjam Garg

3 Randomized MACs

Previously we’ve dealt mainly with deterministic MACs, and here we will examine one reason
why: we will show that any randomized MAC can be converted into a deterministic MAC
using a PRF.

A randomized MAC is a scheme where Mac(k,m) is allowed to sample a uniformly
random string r each time it runs.3 A deterministic MAC is a scheme where Mac(k,m) is
a deterministic function of the inputs (k,m).

Question: Given a randomized MAC ΠR = (GenR,MacR,VerifyR), construct a determin-
istic MAC ΠD = (GenD,MacD,VerifyD), and prove that ΠD is secure.4

You may assume that ΠR takes n-bit messages and l-bit random strings, and ΠD takes n-
bit messages. In your construction, you may also use a PRF F that maps {0, 1}n×{0, 1}n →
{0, 1}l.

You may find it useful to follow the template below and fill in the blanks.5

1. Construction of ΠD:

(a) GenD(1
n): Sample k = (k1, k2)← {0, 1}n × {0, 1}n and output it.

(b) MacD(k,m):

(c) VerifyD(k,m, t): Output 1 if MacD(k,m) = t, and output 0 otherwise.

2. Claim 3.1 ΠD is a secure MAC.

Proof

(a) We will define two hybrids and show that they are indistinguishable6:

i. Hyb0 is the MAC security game MAC-forgeA,ΠD
(n):

A. Sample k ← GenD(1
n).

B. Query Phase: The adversary A gets oracle access to MacD(k, ·). Let Q be
the set of all the message queries that the adversary submits to the oracle.

C. A outputs (m∗, t∗). The challenger checks that VerifyD(k,m
∗, t∗) = 1

and m∗ /∈ Q. The output of the game is 1 if both checks passed and 0
otherwise.

3We sometimes sharpen our notation from Mac(k,m) to Mac(r; k,m) to make the algorithm’s random input
explicit.

4The definition of security is given in Katz & Lindell, 3rd edition, definition 4.2 and in lecture 9, slide 5.
5The size of each blank box below doesn’t indicate how long your answer should be. The box just marks

an incomplete section of the proof, and your answers will sometimes be larger than the boxes.
6We’ve given more detail for the hybrids than necessary. The extra detail is shown in gray.

3

CS 171, Spring 2021 Prof. Sanjam Garg

ii. Hyb1 is the same as Hyb0 except that any calls to F are replaced with calls to
a uniformly random function R:

A. Sample k ← GenD(1
n), and sample a function R uniformly at random

from the set of functions that map {0, 1}n → {0, 1}l.
B. Query Phase: Let Mac′(k,m) be the same as MacD(k,m), except any calls

to F are replaced with calls to R. Next, the adversary A gets oracle access
to Mac′(k, ·). Finally, let Q be the set of all the message queries that the
adversary submits to the oracle.

C. A outputs (m∗, t∗). The challenger checks that VerifyD(k,m
∗, t∗) = 1

and m∗ /∈ Q. The output of the game is 1 if both checks passed and 0
otherwise.

(b) Claim 3.2 For any probabilistic polynomial-time adversary A, there exists a neg-
ligible function negl such that∣∣Pr[Hyb0 → 1]− Pr[Hyb1 → 1]

∣∣ ≤ negl(n)

Proof

(c) Claim 3.3 For any probabilistic polynomial-time adversary A, there exists a neg-
ligible function negl such that

Pr[Hyb1 → 1] ≤ negl(n)

Proof

(d) Finish the proof:

4

