## CS 171: Problem Set 6

## Due Date: March 14th, 2024 at 8:59pm via Gradescope

## 1 One-Way Functions

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way function, and let

$$
g(x)=f(f(x))
$$

Is $g$ necessarily a one-way function? Prove your answer. In your answer, you may use a OWF $h:\{0,1\}^{n / 2} \rightarrow\{0,1\}^{n / 2}$.

Tip: Your answer should have one of the following forms. Only one of them is possible:

- Prove that if $f$ is a OWF, then $g$ is also a OWF.
- (1) Construct a function $f$. (2) Prove that $f$ is a one-way function. (3) Then prove that when $g$ is constructed from this choice of $f, g$ is not a one-way function.

Also, you may cite without proof any theorems proven in discussion or lecture.

## Solution

Theorem $1.1 g$ is not necessarily a one-way function.

## Proof

1. We will construct a OWF $f$ such that $g(x)=f(f(x))$ is not a OWF. First, let $h$ be a OWF that maps $\{0,1\}^{n / 2} \rightarrow\{0,1\}^{n / 2}$. Second, let the input to $f$ take the form $x=\left(x_{0}, x_{1}\right) \in\{0,1\}^{n / 2} \times\{0,1\}^{n / 2}$. Finally,

$$
\text { let } f(x)=0^{n / 2} \| h\left(x_{0}\right)
$$

2. We proved in discussion 7 that $f$ is a OWF.
3. Next, we will show that for this choice of $f, g$ is not a OWF. Observe that:

$$
\begin{aligned}
g(x) & =f(f(x)) \\
& =f\left(0^{n / 2} \| h\left(x_{0}\right)\right)=0^{n / 2} \| h\left(0^{n / 2}\right)
\end{aligned}
$$

Next, note that $g(x)$ is a constant $-0^{n / 2} \| h\left(0^{n / 2}\right)$ - that is the same for all $x$.
Now it is easy to construct an adversary $\mathcal{A}$ that breaks the OWF security of $g$. $\mathcal{A}$ outputs an arbitrary value of $x^{\prime}$, such as $x^{\prime}=0^{n}$. Then $\mathcal{A}$ will win the OWF security game with certainty because for any $x$ chosen by the challenger, $g(x)=g\left(x^{\prime}\right)$.

## 2 Concatenated Hash Functions

Let $\mathcal{H}_{1}=\left(\operatorname{Gen}_{1}, H_{1}\right)$ and $\mathcal{H}_{2}=\left(\operatorname{Gen}_{2}, H_{2}\right)$ be two fixed-length hash functions that take inputs of length $3 n$ bits and produce outputs of length $n$ bits. Only one of $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ is collision resistant; the other one is not collision-resistant, and you don't know which is which.

Next, we define two new hash functions $\mathcal{H}_{3}=\left(\operatorname{Gen}_{3}, H_{3}\right)$ and $\mathcal{H}_{4}=\left(\operatorname{Gen}_{4}, H_{4}\right)$ below:
$\mathcal{H}_{3}:$

1. $\operatorname{Gen}_{3}\left(1^{n}\right):$ Sample $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$ and $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$. Output $s=\left(s_{1}, s_{2}\right)$.
2. $H_{3}^{s}(x)$ : Output $H_{1}^{s_{1}}(x) \| H_{2}^{s_{2}}(x)$.

Note that $H_{3}^{s}:\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$.
$\mathcal{H}_{4}:$

1. $\operatorname{Gen}_{4}\left(1^{n}\right):$ Sample $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$ and $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$. Output $s=\left(s_{1}, s_{2}\right)$.
2. $H_{4}^{s}(x):$ Let $x=\left(x_{1}, x_{2}\right) \in\{0,1\}^{3 n} \times\{0,1\}^{3 n}$. Output $H_{1}^{s_{1}}\left(x_{1}\right) \| H_{2}^{s_{2}}\left(x_{2}\right)$.

Note that $H_{4}^{s}:\{0,1\}^{6 n} \rightarrow\{0,1\}^{2 n}$.

Question: For each of $\mathcal{H}_{3}$ and $\mathcal{H}_{4}$, determine whether the hash function is collisionresistant, and prove your answer.

## Solution

Theorem 2.1 $\mathcal{H}_{3}$ is collision resistant.

## Proof

1. Assume toward contradiction that $\mathcal{H}_{3}$ is not collision resistant. Then there is an adversary $\mathcal{A}$ that finds a collision in $H_{3}^{s}$ with non-negligible probability. Then we will use $\mathcal{A}$ to construct adversaries $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ that find collisions in $H_{1}^{s_{1}}$ and $H_{2}^{s_{2}}$, respectively, with non-negligible probability.
2. $\mathcal{B}_{1}\left(s_{1}\right):$
(a) In the security game for $\mathcal{H}_{1}$, the challenger samples $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$ and sends $s_{1}$ to $\mathcal{B}_{1}$.
(b) $\mathcal{B}_{1}$ samples $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$, and sets $s=\left(s_{1}, s_{2}\right)$.
(c) Then $\mathcal{B}_{1}$ runs $\mathcal{A}(s)$ until it outputs $\left(x, x^{\prime}\right)$, which will be a collision in $H_{3}^{s}$ with non-negligible probability.
(d) $\mathcal{B}_{1}$ outputs $\left(x, x^{\prime}\right)$ as its guess for a collision in $H_{1}^{s_{1}}$.
3. Analysis of $\mathcal{B}_{1}: \mathcal{B}_{1}$ correctly simulates the collision-resistance security game for $\mathcal{H}_{3}$ because $s$ is sampled from the same distribution as the one used by $\operatorname{Gen}_{3}\left(1^{n}\right)$. That ensures that when $\mathcal{B}_{1}$ runs $\mathcal{A}, \mathcal{A}$ will output a collision in $H_{3}^{s}$ with non-negligible probability. In this case, $x \neq x^{\prime}$, and:

$$
\begin{aligned}
H_{3}^{s}(x) & =H_{3}^{s}\left(x^{\prime}\right) \\
H_{1}^{s_{1}}(x) \| H_{2}^{s_{2}}(x) & =H_{1}^{s_{1}}\left(x^{\prime}\right) \| H_{2}^{s_{2}}\left(x^{\prime}\right)
\end{aligned}
$$

This implies that $\left(x, x^{\prime}\right)$ is also a collision in $H_{1}^{s_{1}}$ because $H_{1}^{s_{1}}(x)=H_{1}^{s_{1}}\left(x^{\prime}\right)$.
4. We can find collisions in $H_{2}^{s 2}$ using a similar procedure. We will describe $\mathcal{B}_{2}$, the algorithm that does so, but it is almost identical to $\mathcal{B}_{1} \cdot{ }^{1}$
$\mathcal{B}_{2}\left(s_{2}\right): ~$
(a) In the security game for $\mathcal{H}_{2}$, the challenger samples $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$ and sends $s_{2}$ to $\mathcal{B}_{2}$.
(b) $\mathcal{B}_{2}$ samples $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$, and sets $s=\left(s_{1}, s_{2}\right)$.
(c) Then $\mathcal{B}_{2}$ runs $\mathcal{A}(s)$ until it outputs $\left(x, x^{\prime}\right)$, which will be a collision in $H_{3}^{s}$ with non-negligible probability.
(d) $\mathcal{B}_{2}$ outputs $\left(x, x^{\prime}\right)$ as its guess for a collision in $H_{2}^{s_{2}}$.

By a similar argument to the one above, we can show that $\mathcal{B}_{2}$ finds a collision in $H_{2}^{s_{2}}$ with non-negligible probability.
5. Now we can finish the proof. We have constructed adversaries that break the collisionresistance security of $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$. However, we know that one of these two hash functions is collision-resistant, so we've reached a contradiction. That means our initial assumption was false, and in fact, $\mathcal{H}_{3}$ is collision-resistant.

Theorem $2.2 \mathcal{H}_{4}$ is not collision-resistant.

## Proof

1. We know that one of $\mathcal{H}_{1}$ or $\mathcal{H}_{2}$ is not collision resistant. First, we will prove that if $\mathcal{H}_{2}$ is not collision-resistant, then neither is $\mathcal{H}_{4}$.
2. If $\mathcal{H}_{2}$ is not collision-resistant, then there is an algorithm $\mathcal{A}$ that finds collisions in $H_{2}^{s_{2}}$ with non-negligible probability. Then we can construct an adversary $\mathcal{B}$ that finds collisions in $H_{4}^{s}$ :
$\underline{\mathcal{B}}(s):$
(a) In the security game for $\mathcal{H}_{4}$, the challenger samples $s=\left(s_{1}, s_{2}\right) \leftarrow \operatorname{Gen}_{4}\left(1^{n}\right)$ and sends $s$ to $\mathcal{B}$.

[^0](b) $\mathcal{B}$ runs $\mathcal{A}\left(s_{2}\right)$ until it outputs $\left(x, x^{\prime}\right)$, which will be a collision in $H_{2}^{s_{2}}$ with nonnegligible probability.
(c) $\mathcal{B}$ outputs $0^{3 n} \| x$ and $0^{3 n} \| x^{\prime}$ as its guess for a collision in $H_{4}^{s}$.
3. Analysis of $\mathcal{B}: \mathcal{B}$ correctly simulates the security game for $\mathcal{H}_{2}$ with $\mathcal{A}$ as the adversary because $s_{2}$ is sampled from the same distribution as in $\operatorname{Gen}_{2}\left(1^{n}\right)$. That ensures that with non-negligible probability, $\left(x, x^{\prime}\right)$ are a collision in $H_{2}^{s_{2}}$.
In this case, $x \neq x^{\prime}$, and $H_{2}^{s_{2}}(x)=H_{2}^{s_{2}}\left(x^{\prime}\right)$. Then this means that $0^{3 n} \| x$ and $0^{3 n} \| x^{\prime}$ are a collision in $H_{4}^{s}$ because:
\[

$$
\begin{gathered}
0^{3 n}\left\|x \neq 0^{3 n}\right\| x^{\prime}, \text { and } \\
H_{4}^{s}(x)=H_{1}^{s_{1}}\left(0^{3 n}\right)\left\|H_{2}^{s_{2}}(x)=H_{1}^{s_{1}}\left(0^{3 n}\right)\right\| H_{2}^{s_{2}}\left(x^{\prime}\right)=H_{4}^{s}\left(x^{\prime}\right)
\end{gathered}
$$
\]

In conclusion, $\mathcal{B}$ finds a collision in $H_{4}^{s}$ with non-negligible probability.
4. By a nearly identical argument, we can show that if $\mathcal{H}_{1}$ is not collision-resistant, then neither is $\mathcal{H}_{4}$. Since we know that one of $\mathcal{H}_{1}$ or $\mathcal{H}_{2}$ is not collision-resistant, we can conclude that $\mathcal{H}_{4}$ is also not collision-resistant.

## 3 Hard-Concentrate Predicates

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be an efficiently computable one-to-one function. Prove that if $f$ has a hard-concentrate predicate ${ }^{2}$, then $f$ is one-way.

## Solution

1. The following definition comes from Katz \& Lindell, 3rd edition, definition 8.4.

Definition 3.1 (Hard-Concentrate Predicate) A function hc: $\{0,1\}^{*} \rightarrow\{0,1\}$ is a hard-concentrate predicate of a function $f$ if hc can be computed in polynomial time, and for every probabilistic polynomial-time adversary $\mathcal{A}$, there is a negligible function negl such that

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}^{\left.\left.\operatorname{PA}\left(1^{n}, f(x)\right)=\mathrm{hc}(x)\right] \leq \frac{1}{2}+\operatorname{negl}(n) \text { }\right) \text {. } n(x)}
$$

where the probability is taken over the uniform choice of $x \leftarrow\{0,1\}^{n}$ and the randomness of $\mathcal{A}$.
2. We will prove the contrapositive of our goal: that if $f$ is not one-way, then $f$ does not have a hard-concentrate predicate.
3. If $f$ is not one-way, then there is an adversary $\mathcal{A}$ that maps $f(x)$ to a pre-image of $f(x)$ with non-negligible probability.

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{A}\left(1^{n}, f(x)\right)=x^{\prime} \text { such that } f(x)=f\left(x^{\prime}\right)\right] \text { is non-negl }(n)
$$

Since $f$ is one-to-one, there is only one preimage for every output value.

$$
\text { If } f(x)=f\left(x^{\prime}\right), \text { then } x=x^{\prime}
$$

So with non-negligible probability, $\mathcal{A}$ maps $f(x)$ to $x$ itself.

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{A}\left(1^{n}, f(x)\right)=x\right] \text { is non-negl }(n)
$$

4. Now we will show that any function hc: $\{0,1\}^{n} \rightarrow\{0,1\}$ is not a hard-concentrate predicate for $f$. To do so, we will construct an adversary $\mathcal{B}$ that correctly guesses hc $(x)$ with non-negligible advantage.
B:
(a) In the hard-concentrate predicate security game, the challenger samples $x \leftarrow$ $\{0,1\}^{n}$ and gives $\left(1^{n}, f(x)\right)$ to $\mathcal{B}$.
(b) $\mathcal{B}$ runs $\mathcal{A}\left(1^{n}, f(x)\right)$, to obtain $x^{\prime}$.
(c) $\mathcal{B}$ checks whether $f\left(x^{\prime}\right)=f(x)$.

- If so, $\mathcal{B}$ computes and outputs hc $\left(x^{\prime}\right) .^{3}$

[^1]- If not, $\mathcal{B}$ samples $b \leftarrow\{0,1\}$ and outputs it.

5. Analysis: With non-negligible probability, $\mathcal{A}$ outputs $x^{\prime}=x$. In this case, $\mathcal{B}$ 's output is $\overline{\mathrm{hc}(x) \text {, as we desired. }}$
If $\mathcal{A}$ fails to output $x$, then $\mathcal{B}$ will find that $f\left(x^{\prime}\right) \neq f(x)$, so $\mathcal{B}$ will output a random bit $b$. Then $\operatorname{Pr}[b=\mathrm{hc}(x)]=\frac{1}{2}$.
In total, $\mathcal{B}$ 's success probability is:

$$
\begin{aligned}
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{B}\left(1^{n}, f(x)\right)=\mathrm{hc}(x)\right] & =1 \cdot \operatorname{Pr}_{x \leftarrow\{0,1\} n}\left[\mathcal{A}\left(1^{n}, f(x)\right)=x\right]+\frac{1}{2} \cdot\left(1-\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{A}\left(1^{n}, f(x)\right)=x\right]\right) \\
& =\frac{1}{2}+\frac{1}{2} \cdot \operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[\mathcal{A}\left(1^{n}, f(x)\right)=x\right] \\
& =\frac{1}{2}+\operatorname{non-negl}(n)
\end{aligned}
$$

6. In summary, we've shown that if $f$ is not one-way, then $f$ does not have a hardconcentrate predicate. Then the contrapositive is also true: if $f$ has a hard-concentrate predicate, then $f$ is one-way.

[^0]:    ${ }^{1}$ Students do not have to describe $\mathcal{B}_{2}$ in so much detail. They can just say that $\mathcal{B}_{2}$ works analogously to $\mathcal{B}_{1}$.

[^1]:    ${ }^{2}$ Hard-concentrate predicates are defined in Katz \& Lindell, 3rd edition, definition 8.4 under the name hard-core predicate.
    ${ }^{3}$ Note that $\mathcal{B}$ is given a description of hc.

