CS 171: Problem Set 6

Due Date: March 14th, 2024 at 8:59pm via Gradescope

1 One-Way Functions

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way function, and let

$$g(x) = f(f(x))$$

Is g necessarily a one-way function? Prove your answer. In your answer, you may use a OWF $h: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$.

Tip: Your answer should have one of the following forms. Only one of them is possible:

- Prove that if f is a OWF, then g is also a OWF.
- (1) Construct a function f. (2) Prove that f is a one-way function. (3) Then prove that when g is constructed from this choice of f, g is not a one-way function.

Also, you may cite without proof any theorems proven in discussion or lecture.

Solution

Theorem 1.1 g is not necessarily a one-way function.

Proof

1. We will construct a OWF f such that g(x) = f(f(x)) is not a OWF. First, let h be a OWF that maps $\{0,1\}^{n/2} \to \{0,1\}^{n/2}$. Second, let the input to f take the form $x = (x_0, x_1) \in \{0,1\}^{n/2} \times \{0,1\}^{n/2}$. Finally,

let
$$f(x) = 0^{n/2} ||h(x_0)|$$

- 2. We proved in discussion 7 that f is a OWF.
- 3. Next, we will show that for this choice of f, g is not a OWF. Observe that:

$$g(x) = f(f(x))$$

= $f(0^{n/2}||h(x_0)) = 0^{n/2}||h(0^{n/2})|$

Next, note that g(x) is a constant $-0^{n/2}||h(0^{n/2})|$ - that is the same for all x.

Now it is easy to construct an adversary \mathcal{A} that breaks the OWF security of g. \mathcal{A} outputs an arbitrary value of x', such as $x' = 0^n$. Then \mathcal{A} will win the OWF security game with certainty because for any x chosen by the challenger, g(x) = g(x').

2 Concatenated Hash Functions

Let $\mathcal{H}_1 = (\mathsf{Gen}_1, H_1)$ and $\mathcal{H}_2 = (\mathsf{Gen}_2, H_2)$ be two fixed-length hash functions that take inputs of length 3n bits and produce outputs of length n bits. Only one of \mathcal{H}_1 and \mathcal{H}_2 is collision resistant; the other one is not collision-resistant, and you don't know which is which.

Next, we define two new hash functions $\mathcal{H}_3 = (\mathsf{Gen}_3, H_3)$ and $\mathcal{H}_4 = (\mathsf{Gen}_4, H_4)$ below:

\mathcal{H}_3 :

- 1. $\operatorname{\mathsf{Gen}}_3(1^n)$: Sample $s_1 \leftarrow \operatorname{\mathsf{Gen}}_1(1^n)$ and $s_2 \leftarrow \operatorname{\mathsf{Gen}}_2(1^n)$. Output $s = (s_1, s_2)$.
- 2. $H_3^s(x)$: Output $H_1^{s_1}(x) || H_2^{s_2}(x)$.

Note that $H_3^s: \{0,1\}^{3n} \to \{0,1\}^{2n}$.

\mathcal{H}_4 :

- 1. $\operatorname{\mathsf{Gen}}_4(1^n)$: Sample $s_1 \leftarrow \operatorname{\mathsf{Gen}}_1(1^n)$ and $s_2 \leftarrow \operatorname{\mathsf{Gen}}_2(1^n)$. Output $s = (s_1, s_2)$.
- 2. $H_4^s(x)$: Let $x = (x_1, x_2) \in \{0, 1\}^{3n} \times \{0, 1\}^{3n}$. Output $H_1^{s_1}(x_1) || H_2^{s_2}(x_2)$.

Note that $H_4^s: \{0,1\}^{6n} \to \{0,1\}^{2n}$.

Question: For each of \mathcal{H}_3 and \mathcal{H}_4 , determine whether the hash function is collision-resistant, and prove your answer.

Solution

Theorem 2.1 \mathcal{H}_3 is collision resistant.

Proof

- 1. Assume toward contradiction that \mathcal{H}_3 is not collision resistant. Then there is an adversary \mathcal{A} that finds a collision in H_3^s with non-negligible probability. Then we will use \mathcal{A} to construct adversaries \mathcal{B}_1 and \mathcal{B}_2 that find collisions in $H_1^{s_1}$ and $H_2^{s_2}$, respectively, with non-negligible probability.
- 2. $\mathcal{B}_1(s_1)$:
 - (a) In the security game for \mathcal{H}_1 , the challenger samples $s_1 \leftarrow \mathsf{Gen}_1(1^n)$ and sends s_1 to \mathcal{B}_1 .
 - (b) \mathcal{B}_1 samples $s_2 \leftarrow \mathsf{Gen}_2(1^n)$, and sets $s = (s_1, s_2)$.
 - (c) Then \mathcal{B}_1 runs $\mathcal{A}(s)$ until it outputs (x, x'), which will be a collision in H_3^s with non-negligible probability.
 - (d) \mathcal{B}_1 outputs (x, x') as its guess for a collision in $H_1^{s_1}$.

3. <u>Analysis of \mathcal{B}_1 :</u> \mathcal{B}_1 correctly simulates the collision-resistance security game for \mathcal{H}_3 because *s* is sampled from the same distribution as the one used by $\mathsf{Gen}_3(1^n)$. That ensures that when \mathcal{B}_1 runs \mathcal{A} , \mathcal{A} will output a collision in H_3^s with non-negligible probability. In this case, $x \neq x'$, and:

$$H_3^s(x) = H_3^s(x')$$

$$H_1^{s_1}(x) || H_2^{s_2}(x) = H_1^{s_1}(x') || H_2^{s_2}(x')$$

This implies that (x, x') is also a collision in $H_1^{s_1}$ because $H_1^{s_1}(x) = H_1^{s_1}(x')$.

4. We can find collisions in $H_2^{s_2}$ using a similar procedure. We will describe \mathcal{B}_2 , the algorithm that does so, but it is almost identical to \mathcal{B}_1 .¹

$$\mathcal{B}_2(s_2)$$
:

- (a) In the security game for \mathcal{H}_2 , the challenger samples $s_2 \leftarrow \mathsf{Gen}_2(1^n)$ and sends s_2 to \mathcal{B}_2 .
- (b) \mathcal{B}_2 samples $s_1 \leftarrow \mathsf{Gen}_1(1^n)$, and sets $s = (s_1, s_2)$.
- (c) Then \mathcal{B}_2 runs $\mathcal{A}(s)$ until it outputs (x, x'), which will be a collision in H_3^s with non-negligible probability.
- (d) \mathcal{B}_2 outputs (x, x') as its guess for a collision in $H_2^{s_2}$.

By a similar argument to the one above, we can show that \mathcal{B}_2 finds a collision in $H_2^{s_2}$ with non-negligible probability.

5. Now we can finish the proof. We have constructed adversaries that break the collision-resistance security of \mathcal{H}_1 and \mathcal{H}_2 . However, we know that one of these two hash functions is collision-resistant, so we've reached a contradiction. That means our initial assumption was false, and in fact, \mathcal{H}_3 is collision-resistant.

Theorem 2.2 \mathcal{H}_4 is not collision-resistant.

Proof

- 1. We know that one of \mathcal{H}_1 or \mathcal{H}_2 is not collision resistant. First, we will prove that if \mathcal{H}_2 is not collision-resistant, then neither is \mathcal{H}_4 .
- 2. If \mathcal{H}_2 is not collision-resistant, then there is an algorithm \mathcal{A} that finds collisions in $H_2^{s_2}$ with non-negligible probability. Then we can construct an adversary \mathcal{B} that finds collisions in H_4^s :

$\mathcal{B}(s)$:

(a) In the security game for \mathcal{H}_4 , the challenger samples $s = (s_1, s_2) \leftarrow \mathsf{Gen}_4(1^n)$ and sends s to \mathcal{B} .

¹Students do not have to describe \mathcal{B}_2 in so much detail. They can just say that \mathcal{B}_2 works analogously to \mathcal{B}_1 .

- (b) \mathcal{B} runs $\mathcal{A}(s_2)$ until it outputs (x, x'), which will be a collision in $H_2^{s_2}$ with non-negligible probability.
- (c) \mathcal{B} outputs $0^{3n} || x$ and $0^{3n} || x'$ as its guess for a collision in H_4^s .
- 3. <u>Analysis of \mathcal{B} :</u> \mathcal{B} correctly simulates the security game for \mathcal{H}_2 with \mathcal{A} as the adversary because s_2 is sampled from the same distribution as in $\text{Gen}_2(1^n)$. That ensures that with non-negligible probability, (x, x') are a collision in $H_2^{s_2}$.

In this case, $x \neq x'$, and $H_2^{s_2}(x) = H_2^{s_2}(x')$. Then this means that $0^{3n} ||x|$ and $0^{3n} ||x'|$ are a collision in H_4^s because:

$$0^{3n} ||x \neq 0^{3n} ||x', \text{ and}$$

$$H_4^s(x) = H_1^{s_1}(0^{3n}) ||H_2^{s_2}(x) = H_1^{s_1}(0^{3n}) ||H_2^{s_2}(x') = H_4^s(x')$$

In conclusion, \mathcal{B} finds a collision in H_4^s with non-negligible probability.

4. By a nearly identical argument, we can show that if \mathcal{H}_1 is not collision-resistant, then neither is \mathcal{H}_4 . Since we know that one of \mathcal{H}_1 or \mathcal{H}_2 is not collision-resistant, we can conclude that \mathcal{H}_4 is also not collision-resistant.

3 Hard-Concentrate Predicates

Let $f : \{0,1\}^n \to \{0,1\}^n$ be an efficiently computable one-to-one function. Prove that if f has a hard-concentrate predicate², then f is one-way. Solution

1. The following definition comes from Katz & Lindell, 3rd edition, definition 8.4.

Definition 3.1 (Hard-Concentrate Predicate) A function $hc : \{0,1\}^* \to \{0,1\}$ is a hard-concentrate predicate of a function f if hc can be computed in polynomial time, and for every probabilistic polynomial-time adversary A, there is a negligible function negl such that

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = \mathsf{hc}(x)] \le \frac{1}{2} + \mathsf{negl}(n)$$

where the probability is taken over the uniform choice of $x \leftarrow \{0,1\}^n$ and the randomness of \mathcal{A} .

- 2. We will prove the contrapositive of our goal: that if f is not one-way, then f does not have a hard-concentrate predicate.
- 3. If f is not one-way, then there is an adversary \mathcal{A} that maps f(x) to a pre-image of f(x) with non-negligible probability.

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = x' \text{ such that } f(x) = f(x')] \text{ is non-negl}(n)$$

Since f is one-to-one, there is only one preimage for every output value.

If
$$f(x) = f(x')$$
, then $x = x'$

So with non-negligible probability, \mathcal{A} maps f(x) to x itself.

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = x] \text{ is non-negl}(n)$$

4. Now we will show that any function $hc : \{0,1\}^n \to \{0,1\}$ is not a hard-concentrate predicate for f. To do so, we will construct an adversary \mathcal{B} that correctly guesses hc(x) with non-negligible advantage.

<u>B:</u>

- (a) In the hard-concentrate predicate security game, the challenger samples $x \leftarrow \{0,1\}^n$ and gives $(1^n, f(x))$ to \mathcal{B} .
- (b) \mathcal{B} runs $\mathcal{A}(1^n, f(x))$, to obtain x'.
- (c) \mathcal{B} checks whether f(x') = f(x).
 - If so, \mathcal{B} computes and outputs hc(x').³

 $^{^{2}}$ Hard-concentrate predicates are defined in Katz & Lindell, 3rd edition, definition 8.4 under the name hard-core predicate.

³Note that \mathcal{B} is given a description of hc.

- If not, \mathcal{B} samples $b \leftarrow \{0, 1\}$ and outputs it.
- 5. <u>Analysis:</u> With non-negligible probability, \mathcal{A} outputs x' = x. In this case, \mathcal{B} 's output is $\frac{\mathsf{hc}(x)}{\mathsf{hc}(x)}$, as we desired.

If \mathcal{A} fails to output x, then \mathcal{B} will find that $f(x') \neq f(x)$, so \mathcal{B} will output a random bit b. Then $\Pr[b = hc(x)] = \frac{1}{2}$.

In total, \mathcal{B} 's success probability is:

$$\begin{split} \Pr_{x \leftarrow \{0,1\}^n} [\mathcal{B}(1^n, f(x)) = \mathsf{hc}(x)] &= 1 \cdot \Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = x] + \frac{1}{2} \cdot \left(1 - \Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = x]\right) \\ &= \frac{1}{2} + \frac{1}{2} \cdot \Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) = x] \\ &= \frac{1}{2} + \mathsf{non-negl}(n) \end{split}$$

6. In summary, we've shown that if f is not one-way, then f does not have a hard-concentrate predicate. Then the contrapositive is also true: if f has a hard-concentrate predicate, then f is one-way.