CS 171: Problem Set 6

Due Date: March 14th, 2024 at 8:59pm via Gradescope

1 One-Way Functions

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way function, and let

$$
g(x)=f(f(x))
$$

Is g necessarily a one-way function? Prove your answer. In your answer, you may use a OWF $h:\{0,1\}^{n / 2} \rightarrow\{0,1\}^{n / 2}$.

Tip: Your answer should have one of the following forms. Only one of them is possible:

- Prove that if f is a OWF, then g is also a OWF.
- (1) Construct a function f. (2) Prove that f is a one-way function. (3) Then prove that when g is constructed from this choice of f, g is not a one-way function.

Also, you may cite without proof any theorems proven in discussion or lecture.

2 Concatenated Hash Functions

Let $\mathcal{H}_{1}=\left(\operatorname{Gen}_{1}, H_{1}\right)$ and $\mathcal{H}_{2}=\left(\operatorname{Gen}_{2}, H_{2}\right)$ be two fixed-length hash functions that take inputs of length $3 n$ bits and produce outputs of length n bits. Only one of \mathcal{H}_{1} and \mathcal{H}_{2} is collision resistant; the other one is not collision-resistant, and you don't know which is which.

Next, we define two new hash functions $\mathcal{H}_{3}=\left(\operatorname{Gen}_{3}, H_{3}\right)$ and $\mathcal{H}_{4}=\left(\operatorname{Gen}_{4}, H_{4}\right)$ below: $\underline{\mathcal{H}_{3}}:$

1. $\operatorname{Gen}_{3}\left(1^{n}\right):$ Sample $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$ and $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$. Output $s=\left(s_{1}, s_{2}\right)$.
2. $H_{3}^{s}(x)$: Output $H_{1}^{s_{1}}(x) \| H_{2}^{s_{2}}(x)$.

Note that $H_{3}^{s}:\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$.
$\underline{\mathcal{H}_{4}}:$

1. $\operatorname{Gen}_{4}\left(1^{n}\right):$ Sample $s_{1} \leftarrow \operatorname{Gen}_{1}\left(1^{n}\right)$ and $s_{2} \leftarrow \operatorname{Gen}_{2}\left(1^{n}\right)$. Output $s=\left(s_{1}, s_{2}\right)$.
2. $H_{4}^{s}(x):$ Let $x=\left(x_{1}, x_{2}\right) \in\{0,1\}^{3 n} \times\{0,1\}^{3 n}$. Output $H_{1}^{s_{1}}\left(x_{1}\right) \| H_{2}^{s_{2}}\left(x_{2}\right)$.

Note that $H_{4}^{s}:\{0,1\}^{6 n} \rightarrow\{0,1\}^{2 n}$.

Question: For each of \mathcal{H}_{3} and \mathcal{H}_{4}, determine whether the hash function is collisionresistant, and prove your answer.

3 Hard-Concentrate Predicates

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be an efficiently computable one-to-one function. Prove that if f has a hard-concentrate predicate ${ }^{1}$, then f is one-way.

[^0]
[^0]: ${ }^{1}$ Hard-concentrate predicates are defined in Katz \& Lindell, 3rd edition, definition 8.4 under the name hard-core predicate.

