CS 171: Problem Set 8

Due Date: April 11th, 2024 at 8:59pm via Gradescope

1 A New Version of CDH (10 Points)

We will consider a modified version of the CDH (computational Diffie-Hellman) problem in which an adversary is given g^x and asked to compute g^{x^2} . We will show that this modified CDH problem is as hard as the regular CDH problem.

Definition 1.1 (CDH Game CDH(n, G, A))

- 1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order q. \mathcal{A} is a PPT adversary.
- 2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ and also samples $x, y \leftarrow \mathbb{Z}_q$ independently. Then, the challenger sends to \mathcal{A} the inputs $(\mathbb{G}, q, g, g^x, g^y)$.
- 3. A outputs $h \in \mathbb{G}$. If $h = g^{x \cdot y}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Definition 1.2 (Modified CDH Game mCDH(n, G, B))

- 1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order q. \mathcal{B} is a PPT adversary.
- 2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ and also samples $x \leftarrow \mathbb{Z}_q$. Then, the challenger sends to \mathcal{B} the inputs (\mathbb{G}, q, g, g^x) .
- 3. \mathcal{B} outputs $h \in \mathbb{G}$. If $h = g^{(x^2)}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Question:

- 1. Prove that if there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is non-negligible, then there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is non-negligible.
- 2. Prove that if there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is non-negligible, then there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is non-negligible.

Together, these claims show that the modified CDH problem is hard if and only if the CDH problem is hard.

Solution

Claim 1.3 If there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is nonnegligible, then there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is nonnegligible.

Proof

- 1. Construction of \mathcal{B} :
 - (a) Inputs: (\mathbb{G}, q, g, g^x)
 - (b) Sample $t \leftarrow \mathbb{Z}_q$. Compute $g^{x+t} = g^x \cdot g^t$ and $g^{-xt} = (g^x)^{-t}$.
 - (c) Compute $h_1 \leftarrow \mathcal{A}(\mathbb{G}, q, g, g^x, g^{x+t})$.¹
 - (d) Compute and output $h_2 = h_1 \cdot g^{-xt}$.
- 2. \mathcal{B} correctly simulates $\mathsf{CDH}(n, \mathcal{G}, \mathcal{A})$. This is because over the randomness of x and t, g^x and g^{x+t} are independent and uniformly random in \mathbb{G} . Therefore, \mathcal{A} 's inputs $(\mathbb{G}, q, g, g^x, g^{x+t})$ have the same distribution as in the $\mathsf{CDH}(n, \mathcal{G}, \mathcal{A})$ game.
- 3. Then with non-negligible probability, $\mathcal{A}(\mathbb{G}, q, g, g^x, g^{x+t})$ will output $h_1 = g^{x^2+xt}$, so \mathcal{B} will output $h_2 = g^{x^2+xt} \cdot g^{-xt} = g^{x^2}$.

Claim 1.4 If there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is nonnegligible, then there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is nonnegligible.

Proof

- 1. Construction of \mathcal{A} :
 - (a) Inputs: $(\mathbb{G}, q, g, g^x, g^y)$
 - (b) Sample $t \leftarrow \mathbb{Z}_q$. Compute:

$$g^{x+y+t} = g^{x} \cdot g^{y} \cdot g^{t}$$
$$g^{-t^{2}-2xt-2yt} = g^{-t^{2}} \cdot (g^{x})^{-2t} \cdot (g^{y})^{-2t}$$

(c) Compute

$$h_1 = \mathcal{B}(\mathbb{G}, q, g, g^x)$$
$$h_2 = \mathcal{B}(\mathbb{G}, q, g, g^y)$$
$$h_3 = \mathcal{B}(\mathbb{G}, q, g, g^{x+y+t})$$

(d) Compute and output:

$$h_4 = \left(h_3 \cdot h_1^{-1} \cdot h_2^{-1} \cdot g^{-t^2 - 2xt - 2yt}\right)^{\frac{1}{2}}$$

¹Note that with non-negligible probability, $h_1 = g^{x^2 + xt}$.

2. <u>Analysis:</u> Let's consider the case where $h_1 = g^{x^2}$, $h_2 = g^{y^2}$, and $h_3 = g^{(x+y+t)^2}$. We'll show later on that this occurs with non-negligible probability. Now we will show that in this case, $h_4 = g^{xy}$.

$$h_{3} = g^{(x+y+t)^{2}} = g^{x^{2}+y^{2}+t^{2}+2xy+2xt+2yt}$$

$$h_{4} = (h_{3} \cdot h_{1}^{-1} \cdot h_{2}^{-1} \cdot g^{-t^{2}-2xt-2yt})^{\frac{1}{2}}$$

$$= (g^{(x+y+t)^{2}-x^{2}-y^{2}-t^{2}-2xt-2yt})^{\frac{1}{2}}$$

$$= (g^{2xy})^{\frac{1}{2}} = g^{xy}$$

3. For a fixed (\mathbb{G}, q, g) , each time we run \mathcal{B} , it is independent of the other runs. This is because over the randomness of x, y, and t: g^x, g^y , and g^{x+y+t} are independent and uniformly random elements of \mathbb{G} . After fixing (\mathbb{G}, q, g) , we are running \mathcal{B} on three independent and uniformly random inputs. Therefore, we can treat the success of each run of \mathcal{B} as independent events:

$$\Pr[h_1 = g^{x^2} \operatorname{and} h_2 = g^{y^2} \operatorname{and} h_3 = g^{(x+y+t)^2} | \mathbb{G}, q, g] = \Pr[h_1 = g^{x^2} | \mathbb{G}, q, g]$$
$$\cdot \Pr[h_2 = g^{y^2} | \mathbb{G}, q, g]$$
$$\cdot \Pr[h_3 = g^{(x+y+t)^2} | \mathbb{G}, q, g]$$
$$= \left(\Pr[h_1 = g^{x^2} | \mathbb{G}, q, g]\right)^3 = \operatorname{nonnegl}(n)$$

2 Large-Domain CRHFs From Discrete Log (10 Points)

We saw in lecture² how to construct a CRHF assuming the discrete log problem is hard. The CRHF maps $\mathbb{Z}_q^2 \to \mathbb{G}$ (where \mathbb{G} is a cryptographic group of size q). In this problem, we will extend the domain to \mathbb{Z}_q^t for any $t = \mathsf{poly}(n)$.

Definition 2.1 (A Hash Function $\mathcal{H} = (Gen, H)$)

• Gen (1^n) : Run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Then sample group elements $h_1, \ldots, h_{t-1} \leftarrow \mathbb{G}$ independently and uniformly at random. Then output:

$$s := (\mathbb{G}, q, g, (h_1, \dots, h_{t-1}))$$

as the key.

• $H^{s}(x)$ takes input $x = (x_1, \ldots, x_t) \in \mathbb{Z}_q^t$. Then it outputs

$$H^{s}(x_{1},...,x_{t}) := g^{x_{t}} \cdot \prod_{i=1}^{t-1} h_{i}^{x_{i}}$$

Question: Prove that \mathcal{H} is collision-resistant by completing the proof of theorem 2.2 below.

Theorem 2.2 If the discrete log problem is hard for \mathcal{G} , then \mathcal{H} is collision-resistant.

Proof

- 1. <u>Overview</u>: Assume for the purpose of contradiction that \mathcal{H} is not collision-resistant. Then there exists a PPT adversary \mathcal{A} that, on a randomly generated s, outputs a collision with non-negligible probability. Then we will construct a PPT adversary \mathcal{B} that breaks the discrete log assumption.
- 2. \mathcal{B} will embed the discrete log instance into one index $i \in \{1, \ldots, t-1\}$ of the CRHF and sample the other indices of the CRHF randomly.

Construction of \mathcal{B} :

- (a) Receive (\mathbb{G}, q, g, h) from the challenger.
- (b) Sample $i \leftarrow \{1, \ldots, t-1\}$, and set $h_i := h$.
- (c) For each $j \in \{1, \ldots, t-1\} \setminus \{i\}$, randomly choose $a_j \leftarrow \mathbb{Z}_q$ and set $h_j := g^{a_j}$.
- (d) Run \mathcal{A} on $(\mathbb{G}, q, g, (h_1, \dots, h_{t-1}))$, and receive a collision (x_1, \dots, x_t) and (x'_1, \dots, x'_t) .
- (e) In this case, \mathcal{B} outputs

$$y = \left[(x'_t - x_t) + \sum_{j \in \{1, \dots, t-1\} \setminus \{i\}} a_j \cdot (x'_j - x_j) \right] \cdot (x_i - x'_i)^{-1} \mod q \qquad (2.1)$$

as the discrete log of h.

²See lecture 13, slides 19-20.

3. Lemma 2.3 If \mathcal{A} breaks the collision-resistance of \mathcal{H} , then \mathcal{B} solves the discrete log problem with non-negligible probability.

Proof of lemma 2.3

1. We will show that whenever $H^s(x) = H^s(x')$ and $x_i \neq x'_i$, then \mathcal{B} outputs the y-value for which $h = g^y$.

If $H^s(x) = H^s(x')$ and $x_i \neq x'_i$, then:

$$g^{x_t} \cdot \prod_{j=1}^{t-1} h_j^{x_j} = g^{x'_t} \cdot \prod_{j=1}^{t-1} h_j^{x'_j}.$$
$$h^{x_i} \cdot g^{x_t} \cdot \prod_{j \in \{1, \dots, t-1\} \setminus \{i\}} h_j^{x_j} = h^{x'_i} \cdot g^{x'_t} \cdot \prod_{j \in \{1, \dots, t-1\} \setminus \{i\}} h_j^{x'_j}$$

$$\begin{split} h^{x_i - x'_i} &= g^{x'_t - x_t} \cdot \prod_{j \in \{1, \dots, t-1\} \setminus \{i\}} h_j^{x'_j - x_j} \\ &= g^{x'_t - x_t} \cdot \prod_{j \in \{1, \dots, t-1\} \setminus \{i\}} g^{a_j \cdot (x'_j - x_j)} \\ &= g^{(x'_t - x_t) + \sum_{j \in \{1, \dots, t-1\} \setminus \{i\}} a_j \cdot (x'_j - x_j)} \\ h &= g^{[(x'_t - x_t) + \sum_{j \in \{1, \dots, t-1\} \setminus \{i\}} a_j \cdot (x'_j - x_j)] \cdot (x_i - x'_i)^{-1}} \end{split}$$

2. We will now show that with non-negligible probability, \mathcal{A} 's output satisfies $H^s(x) = H^s(x')$ and $x_i \neq x'_i$.

 $= g^y$

First note that \mathcal{B} correctly simulates the CRHF security game. The *s* given to \mathcal{A} by \mathcal{B} has the same distribution as *s* in the CRHF security game. Therefore, \mathcal{A} outputs a collision with non-negligible probability.

3. If (x, x') are a collision, then for at least one $k \in \{1, \ldots, t-1\}$ we have $x_k \neq x'_k$. Otherwise (if $x_k = x'_k$ for all $k \in \{1, \ldots, t-1\}$), then $x_t = x'_t$ as well because:

$$H^{s}(x) = H^{s}(x')$$

$$g^{x_{t}} \cdot \prod_{j=1}^{t-1} h_{j}^{x_{j}} = g^{x'_{t}} \cdot \prod_{j=1}^{t-1} h_{j}^{x_{j}}$$

$$g^{x_{t}} = g^{x'_{t}}$$

$$x_{t} = x'_{t}$$

Then that would mean that x = x', so (x, x') would not be a collision.

4. \mathcal{A} has no information about \mathcal{B} 's choice of *i*. No matter which *i*-value is chosen by \mathcal{B} , the distribution of (h_1, \ldots, h_{t-1}) is the same: they are sampled independently and uniformly from \mathbb{G} . Then:

$$\Pr[x_i \neq x_i' | (x, x') \text{ are a collision}] \ge \frac{1}{t-1}$$

Therefore, $\Pr[\mathcal{B} \text{ breaks discrete log}] \geq \frac{\Pr[\mathcal{A} \text{ finds a collision}]}{t-1}$, which is non-negligible.

3 Signatures (10 Points)

Let $\Pi = (\text{Gen}, \text{Sign}, \text{Verify})$ be a (secure) signature scheme that accepts messages $m \in \{0, 1\}^n$. We will use Π to construct a candidate signature scheme Π' that introduces additional randomness into the signing algorithm.

 $\Pi' = (\text{Gen}', \text{Sign}', \text{Verify}')$:

- 1. $\operatorname{Gen}'(1^n)$: Same as $\operatorname{Gen}(1^n)$.
- 2. Sign'(sk, m):
 - (a) Let $m \in \{0,1\}^n$. Then sample $r \leftarrow \{0,1\}^n$.
 - (b) Compute $\sigma_0 = \text{Sign}(\mathsf{sk}, m \oplus r)$ and $\sigma_1 = \text{Sign}(\mathsf{sk}, r)$.
 - (c) Output $\sigma = (r, \sigma_0, \sigma_1)$.
- 3. Verify'(pk, m, σ): Output 1 if Verify(pk, $m \oplus r, \sigma_0$) = 1 and Verify(pk, r, σ_1) = 1. Output 0 otherwise.

Question: Indicate whether or not Π' is necessarily secure, and prove your answer.

Solution

Theorem 3.1 Π' is not secure.

Proof

1. We will construct an adversary \mathcal{A} that will win the signature security game for Π' with overwhelming probability.

 $\underline{\text{Construction of } \mathcal{A}:}$

- (a) \mathcal{A} receives pk from the challenger and gets query access to $Sign'(sk, \cdot)$.
- (b) \mathcal{A} queries Sign'(sk, 0ⁿ) twice and receives two responses, $(r^A, \sigma_0^A, \sigma_1^A)$ and $(r^B, \sigma_0^B, \sigma_1^B)$. Note that:

$$\begin{aligned} (r^A, r^B) &\leftarrow \{0, 1\}^n \times \{0, 1\}^n \\ \sigma_1^A &= \mathsf{Sign}(\mathsf{sk}, r^A) \\ \sigma_1^B &= \mathsf{Sign}(\mathsf{sk}, r^B) \end{aligned}$$

(c) \mathcal{A} outputs:

$$m' = r^A \oplus r^B$$

 $\sigma' = (r^A, \sigma_1^B, \sigma_1^A)$

2. We will show that \mathcal{A} wins the signature security game with overwhelming probability. First, $\Pr_{r^A, r^B}[m' \neq 0^n] \geq 1 - \operatorname{negl}(n)$. If $m' \neq 0^n$, then m' was not previously queried to the Sign(sk, \cdot) oracle. Second, $\mathsf{Verify}'(\mathsf{pk},m',\sigma')$ will accept with overwhelming probability.

$$\begin{split} \mathsf{Verify}(\mathsf{pk},m',\sigma') &= 1 \Leftrightarrow \mathsf{Verify}(\mathsf{pk},m'\oplus r^A,\sigma_1^B) = 1 \land \mathsf{Verify}(\mathsf{pk},r^A,\sigma_1^A) = 1 \\ \Leftrightarrow \mathsf{Verify}(\mathsf{pk},r^B,\sigma_1^B) = 1 \land \mathsf{Verify}(\mathsf{pk},r^A,\sigma_1^A) = 1 \end{split}$$

We know that $\sigma_1^A = \mathsf{Sign}(\mathsf{sk}, r^A)$ so $\Pr[\mathsf{Verify}(\mathsf{pk}, r^A, \sigma_1^A) = 1] \ge 1 - \mathsf{negl}(n)$. Likewise, $\sigma_1^B = \mathsf{Sign}(\mathsf{sk}, r^B)$, so $\Pr[\mathsf{Verify}(\mathsf{pk}, r^B, \sigma_1^B) = 1] \ge 1 - \mathsf{negl}(n)$. Therefore, $\Pr[\mathsf{Verify}'(\mathsf{pk}, m', \sigma') = 1] \ge 1 - \mathsf{negl}(n)$.

3. In summary, our adversary \mathcal{A} wins the security game for Π' with overwhelming probability, so Π' is not secure.