CS 171: Problem Set 8

Due Date: April 11th, 2024 at 8:59pm via Gradescope

1 A New Version of CDH (10 Points)

We will consider a modified version of the CDH (computational Diffie-Hellman) problem in which an adversary is given g^{x} and asked to compute $g^{x^{2}}$. We will show that this modified CDH problem is as hard as the regular CDH problem.

Definition 1.1 ($\mathbf{C D H}$ Game $\operatorname{CDH}(n, \mathcal{G}, \mathcal{A})$)

1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order $q . \mathcal{A}$ is a PPT adversary.
2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$ and also samples $x, y \leftarrow \mathbb{Z}_{q}$ independently. Then, the challenger sends to \mathcal{A} the inputs $\left(\mathbb{G}, q, g, g^{x}, g^{y}\right)$.
3. \mathcal{A} outputs $h \in \mathbb{G}$. If $h=g^{x \cdot y}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Definition $1.2($ Modified CDH Game $\operatorname{mCDH}(n, \mathcal{G}, \mathcal{B})$)

1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order $q . \mathcal{B}$ is a PPT adversary.
2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}\left(1^{n}\right)$ and also samples $x \leftarrow \mathbb{Z}_{q}$. Then, the challenger sends to \mathcal{B} the inputs $\left(\mathbb{G}, q, g, g^{x}\right)$.
3. \mathcal{B} outputs $h \in \mathbb{G}$. If $h=g^{\left(x^{2}\right)}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Question:

1. Prove that if there exists a PPT adversary \mathcal{A} for which $\operatorname{Pr}[\operatorname{CDH}(n, \mathcal{G}, \mathcal{A}) \rightarrow 1]$ is nonnegligible, then there exists a PPT adversary \mathcal{B} for which $\operatorname{Pr}[\operatorname{mCDH}(n, \mathcal{G}, \mathcal{B}) \rightarrow 1]$ is non-negligible.
2. Prove that if there exists a PPT adversary \mathcal{B} for which $\operatorname{Pr}[\operatorname{mCDH}(n, \mathcal{G}, \mathcal{B}) \rightarrow 1]$ is nonnegligible, then there exists a PPT adversary \mathcal{A} for which $\operatorname{Pr}[\operatorname{CDH}(n, \mathcal{G}, \mathcal{A}) \rightarrow 1]$ is non-negligible.

Together, these claims show that the modified CDH problem is hard if and only if the CDH problem is hard.

2 Large-Domain CRHFs From Discrete Log (10 Points)

We saw in lecture ${ }^{1}$ how to construct a CRHF assuming the discrete log problem is hard. The CRHF maps $\mathbb{Z}_{q}^{2} \rightarrow \mathbb{G}$ (where \mathbb{G} is a cryptographic group of size q). In this problem, we will extend the domain to \mathbb{Z}_{q}^{t} for any $t=\operatorname{poly}(n)$.

Definition 2.1 (A Hash Function $\mathcal{H}=($ Gen, $H)$)

- Gen $\left(1^{n}\right)$: Run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g). Then sample group elements $h_{1}, \ldots, h_{t-1} \leftarrow \mathbb{G}$ independently and uniformly at random. Then output:

$$
s:=\left(\mathbb{G}, q, g,\left(h_{1}, \ldots, h_{t-1}\right)\right)
$$

as the key.

- $H^{s}(x)$ takes input $x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{Z}_{q}^{t}$. Then it outputs

$$
H^{s}\left(x_{1}, \ldots, x_{t}\right):=g^{x_{t}} \cdot \prod_{i=1}^{t-1} h_{i}^{x_{i}}
$$

Question: Prove that \mathcal{H} is collision-resistant by completing the proof of theorem 2.2 below.
Theorem 2.2 If the discrete log problem is hard for \mathcal{G}, then \mathcal{H} is collision-resistant.

Proof

1. Overview: Assume for the purpose of contradiction that \mathcal{H} is not collision-resistant. Then there exists a PPT adversary \mathcal{A} that, on a randomly generated s, outputs a collision with non-negligible probability. Then we will construct a PPT adversary \mathcal{B} that breaks the discrete log assumption.
2. \mathcal{B} will embed the discrete \log instance into one index $i \in\{1, \ldots, t-1\}$ of the CRHF and sample the other indices of the CRHF randomly.

Construction of \mathcal{B} :

(a) Receive (\mathbb{G}, q, g, h) from the challenger.
(b) Sample $i \leftarrow\{1, \ldots, t-1\}$, and set $h_{i}:=h$.
(c) For each $j \in\{1, \ldots, t-1\} \backslash\{i\}$, randomly choose $a_{j} \leftarrow \mathbb{Z}_{q}$ and set $h_{j}:=g^{a_{j}}$.
(d) $\operatorname{Run} \mathcal{A}$ on $\left(\mathbb{G}, q, g,\left(h_{1}, \ldots, h_{t-1}\right)\right)$, and receive a collision $\left(x_{1}, \ldots, x_{t}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{t}^{\prime}\right)$.
(e) In this case, \mathcal{B} outputs
\square
as the discrete \log of h.

[^0]3. Lemma 2.3 If \mathcal{A} breaks the collision-resistance of \mathcal{H}, then \mathcal{B} solves the discrete log problem with non-negligible probability.

Proof

\square

Note: The size of the box above does not indicate the size of the proof. The proof will most likely not fit in the box.

3 Signatures (10 Points)

Let $\Pi=$ (Gen, Sign, Verify) be a (secure) signature scheme that accepts messages $m \in\{0,1\}^{n}$. We will use Π to construct a candidate signature scheme Π^{\prime} that introduces additional randomness into the signing algorithm.
$\underline{\Pi^{\prime}=\left(\text { Gen }^{\prime}, \text { Sign }^{\prime}, \text { Verify }\right.}$ ' $):$

1. $\operatorname{Gen}^{\prime}\left(1^{n}\right)$: Same as $\operatorname{Gen}\left(1^{n}\right)$.
2. $\operatorname{Sign}^{\prime}(\mathrm{sk}, m)$:
(a) Let $m \in\{0,1\}^{n}$. Then sample $r \leftarrow\{0,1\}^{n}$.
(b) Compute $\sigma_{0}=\operatorname{Sign}(\mathrm{sk}, m \oplus r)$ and $\sigma_{1}=\operatorname{Sign}(\mathrm{sk}, r)$.
(c) Output $\sigma=\left(r, \sigma_{0}, \sigma_{1}\right)$.
3. Verify ${ }^{\prime}(\mathrm{pk}, m, \sigma)$: Output 1 if $\operatorname{Verify}\left(\mathrm{pk}, m \oplus r, \sigma_{0}\right)=1$ and $\operatorname{Verify}\left(\mathrm{pk}, r, \sigma_{1}\right)=1$. Output 0 otherwise.

Question: Indicate whether or not Π^{\prime} is necessarily secure, and prove your answer.

[^0]: ${ }^{1}$ See lecture 13, slides 19-20.

