CS 171: Problem Set 8

Due Date: April 11th, 2024 at 8:59pm via Gradescope

1 A New Version of CDH (10 Points)

We will consider a modified version of the CDH (computational Diffie-Hellman) problem in which an adversary is given g^x and asked to compute g^{x^2} . We will show that this modified CDH problem is as hard as the regular CDH problem.

Definition 1.1 (CDH Game CDH(n, G, A))

- 1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order q. \mathcal{A} is a PPT adversary.
- 2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ and also samples $x, y \leftarrow \mathbb{Z}_q$ independently. Then, the challenger sends to \mathcal{A} the inputs $(\mathbb{G}, q, g, g^x, g^y)$.
- 3. A outputs $h \in \mathbb{G}$. If $h = g^{x \cdot y}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Definition 1.2 (Modified CDH Game mCDH(n, G, B))

- 1. Inputs: n is the security parameter. \mathcal{G} is an algorithm that generates a group \mathbb{G} of prime order q. \mathcal{B} is a PPT adversary.
- 2. The challenger samples $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ and also samples $x \leftarrow \mathbb{Z}_q$. Then, the challenger sends to \mathcal{B} the inputs (\mathbb{G}, q, g, g^x) .
- 3. \mathcal{B} outputs $h \in \mathbb{G}$. If $h = g^{(x^2)}$, then the output of the game is 1 (win). Otherwise, the output of the game is 0 (lose).

Question:

- 1. Prove that if there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is non-negligible, then there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is non-negligible.
- 2. Prove that if there exists a PPT adversary \mathcal{B} for which $\Pr[\mathsf{mCDH}(n, \mathcal{G}, \mathcal{B}) \to 1]$ is non-negligible, then there exists a PPT adversary \mathcal{A} for which $\Pr[\mathsf{CDH}(n, \mathcal{G}, \mathcal{A}) \to 1]$ is non-negligible.

Together, these claims show that the modified CDH problem is hard if and only if the CDH problem is hard.

2 Large-Domain CRHFs From Discrete Log (10 Points)

We saw in lecture¹ how to construct a CRHF assuming the discrete log problem is hard. The CRHF maps $\mathbb{Z}_q^2 \to \mathbb{G}$ (where \mathbb{G} is a cryptographic group of size q). In this problem, we will extend the domain to \mathbb{Z}_q^t for any $t = \mathsf{poly}(n)$.

Definition 2.1 (A Hash Function $\mathcal{H} = (Gen, H)$)

• Gen (1^n) : Run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Then sample group elements $h_1, \ldots, h_{t-1} \leftarrow \mathbb{G}$ independently and uniformly at random. Then output:

$$s := (\mathbb{G}, q, g, (h_1, \dots, h_{t-1}))$$

as the key.

• $H^s(x)$ takes input $x = (x_1, \ldots, x_t) \in \mathbb{Z}_q^t$. Then it outputs

$$H^{s}(x_{1},\ldots,x_{t}) := g^{x_{t}} \cdot \prod_{i=1}^{t-1} h_{i}^{x_{i}}$$

Question: Prove that \mathcal{H} is collision-resistant by completing the proof of theorem 2.2 below.

Theorem 2.2 If the discrete log problem is hard for \mathcal{G} , then \mathcal{H} is collision-resistant.

Proof

- 1. <u>Overview</u>: Assume for the purpose of contradiction that \mathcal{H} is not collision-resistant. Then there exists a PPT adversary \mathcal{A} that, on a randomly generated s, outputs a collision with non-negligible probability. Then we will construct a PPT adversary \mathcal{B} that breaks the discrete log assumption.
- 2. \mathcal{B} will embed the discrete log instance into one index $i \in \{1, \ldots, t-1\}$ of the CRHF and sample the other indices of the CRHF randomly.

Construction of \mathcal{B} :

- (a) Receive (\mathbb{G}, q, g, h) from the challenger.
- (b) Sample $i \leftarrow \{1, \ldots, t-1\}$, and set $h_i := h$.
- (c) For each $j \in \{1, \ldots, t-1\} \setminus \{i\}$, randomly choose $a_j \leftarrow \mathbb{Z}_q$ and set $h_j := g^{a_j}$.
- (d) Run \mathcal{A} on $(\mathbb{G}, q, g, (h_1, \dots, h_{t-1}))$, and receive a collision (x_1, \dots, x_t) and (x'_1, \dots, x'_t) .
- (e) In this case, \mathcal{B} outputs

as the discrete log of h.

¹See lecture 13, slides 19-20.

3. Lemma 2.3 If \mathcal{A} breaks the collision-resistance of \mathcal{H} , then \mathcal{B} solves the discrete log problem with non-negligible probability.

Proof

Note: The size of the box above does not indicate the size of the proof. The proof will most likely not fit in the box.

3 Signatures (10 Points)

Let $\Pi = (\text{Gen}, \text{Sign}, \text{Verify})$ be a (secure) signature scheme that accepts messages $m \in \{0, 1\}^n$. We will use Π to construct a candidate signature scheme Π' that introduces additional randomness into the signing algorithm.

 $\Pi' = (\text{Gen}', \text{Sign}', \text{Verify}')$:

- 1. $\operatorname{Gen}'(1^n)$: Same as $\operatorname{Gen}(1^n)$.
- 2. Sign'(sk, m):
 - (a) Let $m \in \{0,1\}^n$. Then sample $r \leftarrow \{0,1\}^n$.
 - (b) Compute $\sigma_0 = \mathsf{Sign}(\mathsf{sk}, m \oplus r)$ and $\sigma_1 = \mathsf{Sign}(\mathsf{sk}, r)$.
 - (c) Output $\sigma = (r, \sigma_0, \sigma_1)$.
- 3. Verify'(pk, m, σ): Output 1 if Verify(pk, $m \oplus r, \sigma_0$) = 1 and Verify(pk, r, σ_1) = 1. Output 0 otherwise.

Question: Indicate whether or not Π' is necessarily secure, and prove your answer.