
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 9
Due Date: April 18th, 2024 at 8:59pm via Gradescope

1 Bounded Collusion Identity-Based Encryption (10 Points)

In Discussion 10, we gave a candidate construction of IBE that is insecure if the attacker is
allowed to make two queries to KeyGen(msk, ·).

Question: Prove that if DDH is hard for G and if the attacker is only allowed to make one
query to KeyGen(msk, ·), then the attacker cannot break CPA security for this IBE scheme.

Note: You may assume that the adversary outputs the IDs used in its encryption and
KeyGen queries at the start of the security game.1

Security Definition

Here is the definition of security that we will use in this problem.

Definition 1.1 (Weak CPA Security Game for Bounded Collusion IBE) Let n ∈ N
be the security parameter, and let A be the adversary.

G(n,A):

1. The adversary outputs two different IDs (IDE , IDK), which will be used for the encryp-
tion and KeyGen queries respectively.2 Note that IDE ̸= IDK .

2. The challenger samples (mpk,msk) ← Setup(1n) and b ← {0, 1}. Then they send mpk
to the adversary A.

3. A can make at most 1 encryption query and 1 KeyGen query, which are defined below.
The queries can be made in any order.

(a) Encryption Query: A outputs IDE along with two messages (m0,m1) of the
same length. The challenger encrypts mb as follows:

ct = Enc(mpk, IDE ,mb)

The challenger returns ct to A.

(b) KeyGen Query: A queries KeyGen(msk, ·) on IDK and receives skIDK
.

4. A outputs a bit b′. The output of G(n,A) is 1 if b′ = b and 0 otherwise.

Definition 1.2 (Weak CPA Security for Bounded Collusion IBE) We say that the
IBE scheme is weakly CPA-secure with collusion bound 1 if for all PPT adversaries
A,

Pr[G(n,A)→ 1] ≤ 1

2
+ negl(n)

1It is possible to prove security without this restriction, but that would require reprogramming the random
oracle, which is an advanced technique that we won’t cover in this class.

2In the regular CPA security game for IBE, the adversary can choose IDE , IDK later on.

1

CS 171, Spring 2024 Prof. Sanjam Garg

Solution

1. Key Idea: If the adversary is given just one skID, then this is basically the El Gamal
encryption scheme. Our security proof will resemble the proof of security for El Gamal
encryption.

2. Assume toward contradiction that there’s an adversary ACPA that breaks weak CPA
security for this encryption scheme. Then we can construct an adversary ADDH to
solve DDH with non-negligible advantage.

ADDH :

(a) The DDH challenger samples pp = (G, q, g) ← G(1n). They also sample x, y, r ←
Zq independently, and they sample β ← {0, 1}. Then they send the following
values to ADDH :

(pp, gx, gy, gxy+rβ)

(b) ADDH will simulate the CPA security game.

i. They run ACPA until it outputs (IDE , IDK).

ii. They compute rE = H(IDE) and rK = H(IDK) and sample sK ← Zq.

iii. They compute:

h0 = (gx · g−sK)(rE−rK)−1

h1 = gsK · (h0)−rK

and send mpk = (pp, h0, h1) to ACPA.

iv. They also sample b← {0, 1}.
(c) Queries:

i. Encryption Query: When ACPA outputs IDE along with two messages
(m0,m1), ADDH responds with

ct = (gy, gxy+rβ ·mb)

ii. KeyGen Query: When ACPA outputs IDK , ADDH responds with

skIDK
= (IDK , sK)

(d) When ACPA outputs b′, ADDH checks whether b′ = b. If so, ADDH outputs β′ = 0,
and if not, ADDH outputs β′ = 1.

3. Let sE = x. Then the distribution of (h0, h1, rE , rK , sE , sK) are the same as they would
be in the weak CPA security game.

When ADDH computes h0 and h1, they are implicitly fixing the values of a and b
because h0 = ga and h1 = gb. We will show that they choose the unique values of (a, b)
such that:

sE = a · rE + b

sK = a · rK + b

2

CS 171, Spring 2024 Prof. Sanjam Garg

Recall that the values of (rE , rK , sE , sK) are fixed before (h0, h1) are computed.

Let us calculate the values of (a, b):

h0 = (gx · g−sK)(rE−rK)−1

ga = g(x−sK)/(rE−rK)

a =
x− sK
rE − rK

h1 = gsK · (h0)(−rK)

gb = gsK−a·rK

b = sK − a · rK

Note that (a, b) are completely determined by (rE , rK , sE , sK), and these are the unique
values of (a, b) that satisfy:

sK = a · rK + b

and

sE = x = a · rE − a · rK + sK

= a · rE + b

Finally, if we fix (rE , rK) such that rE ̸= rK , then over the randomness of (sE , sK), the
values of (a, b) are independent and uniformly random in Zq.

Therefore, the distribution of (a, b, rE , rK , sE , sK) are the same as in the weak CPA
security game.

4. If β = 0, then ADDH correctly simulates the weak CPA security game with sE = x =
a · rE + b.

This is because ADDH simulates the encryption query correctly. Recall that when
β = 0, ADDH outputs the ciphertext:

ct = (gy, gxy ·mb)

= (gy, (garE+b)y ·mb)

= (gy, hy·rE0 · hy1 ·mb)

= Enc(mpk, IDE ,mb)

In this case, ACPA will guess b′ = b with non-negligible advantage:

Pr[b′ = b|β = 0] ≥ 1

2
+ non-negl(n)

5. If β = 1, then ct gives ACPA no information about b. In this case:

ct = (gy, gxy+r ·mb)

3

CS 171, Spring 2024 Prof. Sanjam Garg

For any given (b, x, y), gxy+r is a uniformly random group element due to the random-
ness of r. So (gxy+r ·mb) is uniformly random and independent of (b, x, y). Therefore,
ACPA has no information about b. Then

Pr[b′ = b|β = 1] =
1

2

6. Recall that β′ = 0 if b′ = b and β′ = 1 if b′ ̸= b. Then:

Pr[β′ = β|β = 0] = Pr[b′ = b|β = 0] ≥ 1

2
+ non-negl(n)

Pr[β′ = β|β = 1] = Pr[b′ ̸= b|β = 1] =
1

2

Pr[β′ = β] =
1

2
· Pr[β′ = β|β = 0] +

1

2
· Pr[β′ = β|β = 1]

≥ 1

2
·
(
1

2
+ non-negl(n)

)
+

1

2
· 1
2

=
1

2
+

1

2
· non-negl(n)

Note that 1
2 · non-negl(n) is still non-negligible.

This means that ADDH correctly guesses β with non-negligible advantage.

7. This is a contradiction because DDH is hard. Therefore, the original assumption was
false, and in fact, there is no PPT adversary ACPA that breaks weak CPA security for
this encryption scheme.

4

CS 171, Spring 2024 Prof. Sanjam Garg

2 Digital Signatures From Bilinear Maps (10 Points)

We will construct a digital signature scheme using a bilinear map and a random oracle.

Let G(1n) generate the parameters of a bilinear map – (G,GT , q, g, e) – for which the
decisional bilinear Diffie-Hellman problem (DBDH) is hard. Let G be the message space,
and let H : G→ G be a random oracle (a truly random function that all parties have access
to).

Consider the following digital signature scheme Π = (Gen,Sign,Verify):

1. Gen(1n):

(a) Generate the parameters of a bilinear map: pp = (G,GT , q, g, e)← G(1n).
(b) Sample x← Zq independently, and compute h = gx.

(c) Output pk = (pp, h) and sk = (pp, x).

2. Sign(sk,m): Let m ∈ G. Then output

σ = H(m)x

3. Verify(pk,m, σ): TBD

Questions:

1. Fill in Verify(pk,m, σ) so that the scheme is both correct and secure.

2. Prove that Π is correct, that any honestly generated signature will be accepted by
Verify(pk,m, σ).

3. Let us modify the construction so that H is now just the identity function: H(m) = m
for all m ∈ G. Prove that with this modification, the signature scheme is insecure.

Note: We won’t have you prove the security of Π since the proof is a little more advanced
than what we cover in this course.

Solution This is the BLS signature scheme. You can read more about the BLS scheme
and find a sketch of the security proof in Boneh & Shoup, Section 15.5.

1. Verify(pk,m, σ): Check whether

e(H(m), h) = e(g, σ)

If so, output 1 (accept). If not, output 0 (reject).

2. Claim 2.1 The signature scheme Π is correct.

Proof We can express H(m) as H(m) = gy for some y ∈ Zq. Then

e(H(m), h) = e(gy, gx) = e(g, g)y·x

5

http://toc.cryptobook.us/book.pdf

CS 171, Spring 2024 Prof. Sanjam Garg

Furthermore, when σ is generated honestly,

σ = H(m)x = (gy)x = gy·x

Then

e(g, σ) = e(g, gy·x) = e(g, g)y·x

= e(H(m), h)

Therefore, σ will be accepted by Verify(pk,m, σ) with certainty.

3. Claim 2.2 If we modify H so that H is the identity function, then the signature scheme
is insecure.

Proof

(a) The following adversary can forge a signature:

i. The adversary chooses m ∈ G\{1} and queries Sign(sk,m) to obtain σ = mx.

ii. The adversary outputs m∗ = m2 and σ∗ = σ2 as its forgery.

(b) Note that m∗ was not previously queried to Sign(sk, ·) because m∗ ̸= m.

(c) Next, Verify(pk,m∗, σ∗) will accept. Let us express m as m = gy for some y ∈
Zq\{0}. Then m∗ = g2y, and

e(H(m∗), h) = e(m∗, h) = e(g2y, gx) = e(g, g)2y·x

(d) Next

e(g, σ∗) = e(g, σ2) = e(g,m2x) = e(g, g2y·x) = e(g, g)2y·x

= e(H(m∗), h)

Then Verify(pk,m∗, σ∗) will accept.

6

CS 171, Spring 2024 Prof. Sanjam Garg

3 Merkle Proofs (10 Points)3

You will write a Python function to generate a Merkle proof.

You can learn more about Merkle proofs here, and you can download the starter code here.
The starter code folder contains the following files:

• prover.py: This script generates the Merkle proof and writes it to a file for the verifier
to read. Specifically it writes the leaf position, the leaf value, and the hashes used to
prove the leaf’s presence at the given position in the Merkle tree.

Your job is to implement the function gen merkle proof(). The missing code
can be implemented in less than ten lines of Python.

Example of running prover.py: Run “python3 prover.py 683” from the command
line. This script first calls the function gen leaves for merkle tree() to generate a
thousand strings that will make up the leaves of a Merkle tree. Next it calls the method
gen merkle proof() to generate the hashes for the Merkle proof for leaf number 683.
Finally, it writes the Merkle proof to a text file merkle proof.txt.

• verifier.py: The script reads in the Merkle proof generated by the prover and ver-
ifies that the leaf is at the stated position. Note that the value ROOT is hardcoded
into this script. ROOT is the root for the Merkle tree whose leaves were generated by
gen leaves for merkle tree().

Do not make any changes to this file.

• merkle utils.py: This python script contains helpers used for generating and verifying
the proof.

Do not make any changes to this file.

• proof-for-leaf-95.txt: This is an example Merkle proof for leaf #95.

Once you’ve finished editing prover.py, try generating the Merkle proof for leaf #95
with the command “python3 prover.py 95”, and then compare the result to the ex-
pected output provided in proof-for-leaf-95.txt.

Another Test: After you implement the function gen merkle proof() in prover.py, run
the following two scripts and check that your output matches the output below:

$ python3 prover.py 683

I generated 1000 leaves for a Merkle tree of height 10.

I generated a Merkle proof for leaf #683 in file merkle proof.txt

$ python3 verifier.py 683

I verified the Merkle proof: leaf #683 in the committed tree is "data item

683".

3This problem is adapted from this project.

7

https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/
https://eecs171.com/assets/homework/hw9.zip
https://cs251.stanford.edu/hw/proj1.pdf

CS 171, Spring 2024 Prof. Sanjam Garg

Try changing one character in merkle proof.txt and check that the verifier now rejects
the proof.

Deliverables: Please submit your file prover.py on Gradescope. The autograder will test
your prover on random leaves.

Tips: To help you understand the starter code, try to answer the following questions for
yourself. You do not need to submit your answers to these questions:

• What does the verifier expect you to include in the proof?

• How is height defined?

• What is the purpose of the padding in gen merkle proof()?

Solution

de f gen merk l e proo f (l eaves , pos) :

”””Takes as input a l i s t o f l e av e s and a l e a f p o s i t i o n .

Returns the l i s t o f hashes that prove the l e a f i s in

the t r e e at p o s i t i o n pos .”””

he ight = math . c e i l (math . l og (l en (l e av e s) , 2))

a s s e r t he ight < MAXHEIGHT, ”Too many l e av e s . ”

hash a l l the l e av e s

s t a t e = l i s t (map(ha sh l ea f , l e a v e s))

Pad the l i s t o f hashed l e av e s to a power o f two

padlen = (2∗∗ he ight)− l en (l e av e s)

s t a t e += [b”\x00 ”] ∗ padlen

i n i t i a l i z e a l i s t that w i l l conta in the hashes in the proo f

8

CS 171, Spring 2024 Prof. Sanjam Garg

hashes = []

l e v e l p o s = pos # l o c a l copy o f pos

f o r l e v e l in range (he ight) :

i s r i g h t n o d e = l e v e l p o s % 2

s i b l i n g p o s = (l e v e l p o s − 1) i f i s r i g h t n o d e e l s e (l e v e l p o s + 1)

i f s i b l i n g p o s < l en (s t a t e) :

s i b l i n g h a s h = s t a t e [s i b l i n g p o s]

hashes . append (s i b l i n g h a s h)

new state = []

f o r i in range (0 , l en (s t a t e) , 2) :

l e f t = s t a t e [i]

r i g h t = s t a t e [i + 1] i f (i + 1) < l en (s t a t e) e l s e l e f t
Handle the case where the number o f nodes at t h i s l e v e l i s odd

new state . append (ha sh in t e rna l node (l e f t , r i g h t))

s t a t e = new state

l e v e l p o s //= 2

return hashes

9

	Bounded Collusion Identity-Based Encryption (10 Points)
	Digital Signatures From Bilinear Maps (10 Points)
	Merkle Proofs (10 Points)This problem is adapted from this project.

