
CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 9
Due Date: April 18th, 2024 at 8:59pm via Gradescope

1 Bounded Collusion Identity-Based Encryption (10 Points)

In Discussion 10, we gave a candidate construction of IBE that is insecure if the attacker is
allowed to make two queries to KeyGen(msk, ·).

Question: Prove that if DDH is hard for G and if the attacker is only allowed to make one
query to KeyGen(msk, ·), then the attacker cannot break CPA security for this IBE scheme.

Note: You may assume that the adversary outputs the IDs used in its encryption and
KeyGen queries at the start of the security game.1

Security Definition

Here is the definition of security that we will use in this problem.

Definition 1.1 (Weak CPA Security Game for Bounded Collusion IBE) Let n ∈ N
be the security parameter, and let A be the adversary.

G(n,A):

1. The adversary outputs two different IDs (IDE , IDK), which will be used for the encryp-
tion and KeyGen queries respectively.2 Note that IDE ̸= IDK .

2. The challenger samples (mpk,msk) ← Setup(1n) and b ← {0, 1}. Then they send mpk
to the adversary A.

3. A can make at most 1 encryption query and 1 KeyGen query, which are defined below.
The queries can be made in any order.

(a) Encryption Query: A outputs IDE along with two messages (m0,m1) of the
same length. The challenger encrypts mb as follows:

ct = Enc(mpk, IDE ,mb)

The challenger returns ct to A.

(b) KeyGen Query: A queries KeyGen(msk, ·) on IDK and receives skIDK
.

4. A outputs a bit b′. The output of G(n,A) is 1 if b′ = b and 0 otherwise.

Definition 1.2 (Weak CPA Security for Bounded Collusion IBE) We say that the
IBE scheme is weakly CPA-secure with collusion bound 1 if for all PPT adversaries
A,

Pr[G(n,A)→ 1] ≤ 1

2
+ negl(n)

1It is possible to prove security without this restriction, but that would require reprogramming the random
oracle, which is an advanced technique that we won’t cover in this class.

2In the regular CPA security game for IBE, the adversary can choose IDE , IDK later on.

1



CS 171, Spring 2024 Prof. Sanjam Garg

2 Digital Signatures From Bilinear Maps (10 Points)

We will construct a digital signature scheme using a bilinear map and a random oracle.

Let G(1n) generate the parameters of a bilinear map – (G,GT , q, g, e) – for which the
decisional bilinear Diffie-Hellman problem (DBDH) is hard. Let G be the message space,
and let H : G→ G be a random oracle (a truly random function that all parties have access
to).

Consider the following digital signature scheme Π = (Gen,Sign,Verify):

1. Gen(1n):

(a) Generate the parameters of a bilinear map: pp = (G,GT , q, g, e)← G(1n).
(b) Sample x← Zq independently, and compute h = gx.

(c) Output pk = (pp, h) and sk = (pp, x).

2. Sign(sk,m): Let m ∈ G. Then output

σ = H(m)x

3. Verify(pk,m, σ): TBD

Questions:

1. Fill in Verify(pk,m, σ) so that the scheme is both correct and secure.

2. Prove that Π is correct, that any honestly generated signature will be accepted by
Verify(pk,m, σ).

3. Let us modify the construction so that H is now just the identity function: H(m) = m
for all m ∈ G. Prove that with this modification, the signature scheme is insecure.

Note: We won’t have you prove the security of Π since the proof is a little more advanced
than what we cover in this course.

2



CS 171, Spring 2024 Prof. Sanjam Garg

3 Merkle Proofs (10 Points)3

You will write a Python function to generate a Merkle proof.

You can learn more about Merkle proofs here, and you can download the starter code here.
The starter code folder contains the following files:

• prover.py: This script generates the Merkle proof and writes it to a file for the verifier
to read. Specifically it writes the leaf position, the leaf value, and the hashes used to
prove the leaf’s presence at the given position in the Merkle tree.

Your job is to implement the function gen merkle proof(). The missing code
can be implemented in less than ten lines of Python.

Example of running prover.py: Run “python3 prover.py 683” from the command
line. This script first calls the function gen leaves for merkle tree() to generate a
thousand strings that will make up the leaves of a Merkle tree. Next it calls the method
gen merkle proof() to generate the hashes for the Merkle proof for leaf number 683.
Finally, it writes the Merkle proof to a text file merkle proof.txt.

• verifier.py: The script reads in the Merkle proof generated by the prover and ver-
ifies that the leaf is at the stated position. Note that the value ROOT is hardcoded
into this script. ROOT is the root for the Merkle tree whose leaves were generated by
gen leaves for merkle tree().

Do not make any changes to this file.

• merkle utils.py: This python script contains helpers used for generating and verifying
the proof.

Do not make any changes to this file.

• proof-for-leaf-95.txt: This is an example Merkle proof for leaf #95.

Once you’ve finished editing prover.py, try generating the Merkle proof for leaf #95
with the command “python3 prover.py 95”, and then compare the result to the ex-
pected output provided in proof-for-leaf-95.txt.

Another Test: After you implement the function gen merkle proof() in prover.py, run
the following two scripts and check that your output matches the output below:

$ python3 prover.py 683

I generated 1000 leaves for a Merkle tree of height 10.

I generated a Merkle proof for leaf #683 in file merkle proof.txt

$ python3 verifier.py 683

I verified the Merkle proof: leaf #683 in the committed tree is "data item

683".

3This problem is adapted from this project.

3

https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/
https://eecs171.com/assets/homework/hw9.zip
https://cs251.stanford.edu/hw/proj1.pdf


CS 171, Spring 2024 Prof. Sanjam Garg

Try changing one character in merkle proof.txt and check that the verifier now rejects
the proof.

Deliverables: Please submit your file prover.py on Gradescope. The autograder will test
your prover on random leaves.

Tips: To help you understand the starter code, try to answer the following questions for
yourself. You do not need to submit your answers to these questions:

• What does the verifier expect you to include in the proof?

• How is height defined?

• What is the purpose of the padding in gen merkle proof()?

4


	Bounded Collusion Identity-Based Encryption (10 Points)
	Digital Signatures From Bilinear Maps (10 Points)
	Merkle Proofs (10 Points)This problem is adapted from this project.

