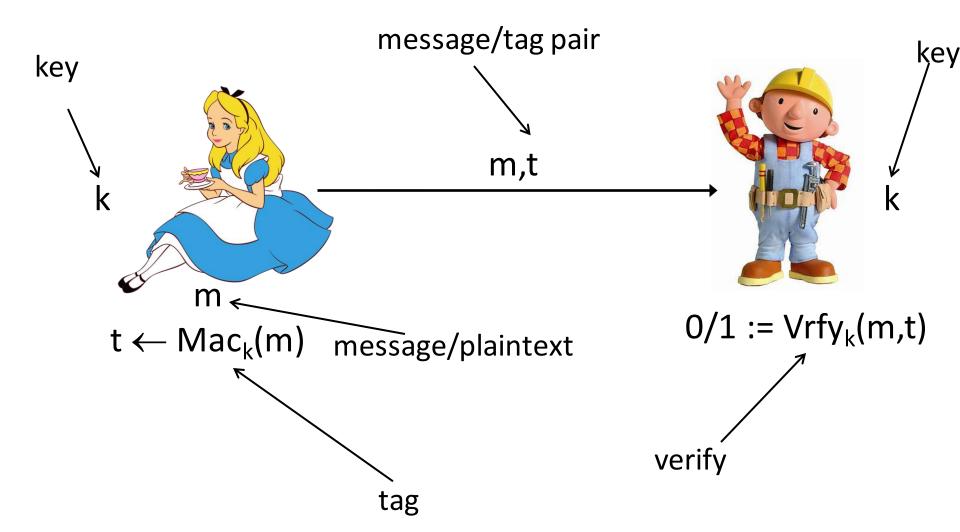
CS171: Cryptography

Lecture 10

Sanjam Garg

Message Authentication Code (MAC)



MACs - Formally

- (Gen, Mac, Vrfy)
- $Gen(1^n)$: Outputs a key k.
- $Mac_k(m)$: Outputs a tag t.
- $Vrfy_k(m, t)$: Outputs 0/1.
- Correctness: $\forall n, k \leftarrow Gen(1^n), \forall m \in \{0,1\}^*$, we have that $Vrfy_k(m, Mac_k(m)) = 1$.
- Default Construction of Vrfy (for deterministic Mac): $Vrfy_k(m, t)$ outputs 1 if and only $Mac_k(m) = t$.

Unforgeability/Security of MAC

 $MacForge_{A,\Pi}(1^n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$.
- 2. Let (m^*, t^*) be the output of $A^{Mac_k(\cdot)}$. Let M be the list of queries A makes.
- 3. Output 1 if $Vrf y_k(m^*, t^*) = 1 \land m^* \notin M$ and 0 otherwise.

 $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under adaptive chosen attack, or is *eu-cma-secure* if \forall PPT *A* it holds that: $\Pr[MacForge_{A,\Pi} = 1] \leq negl(n)$

Saw last time

- Provably secure construction of Mac
 - Inefficient
- Efficient Construction CBC Based
 - Not Proved

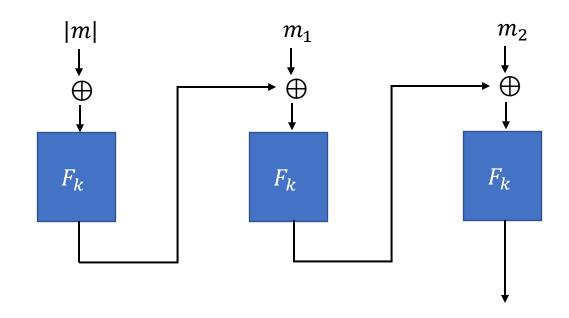
MAC (from fixed-length to arbitrary-length messages)

Construct Mac' (arbitrary-length) from Mac (fixed-length)

- $Mac'_k (m \in \{0,1\}^*)$:
 - Parse m as $m_1 \cdots m_d$ where each m_i is of length n/4
 - $r \leftarrow \{0,1\}^{n/4}$
 - Output r, $t_1 \dots t_d$, where for each i we have
 - $t_i = Mac_k(r||\ell||i||m_i)$, where ℓ is the number of blocks

Use this to Mac messages of arbitrary length (multiples of n)

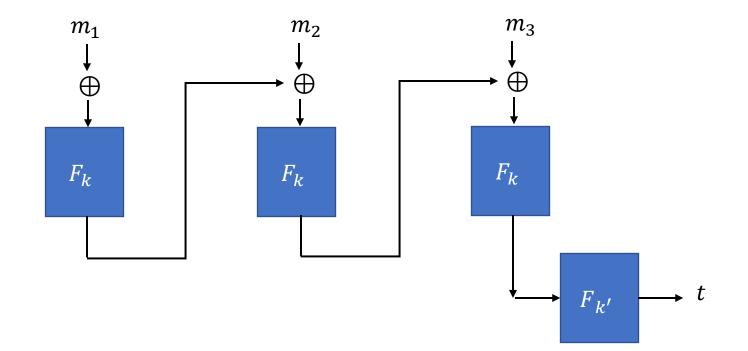
• Method 1: Mac on message m is the CBC-Mac on message $|m| \parallel m$



t

Use this to sign messages of arbitrary length (multiples of n)

• Method 2: Mac of the CBC-Mac



Authenticated Encryption

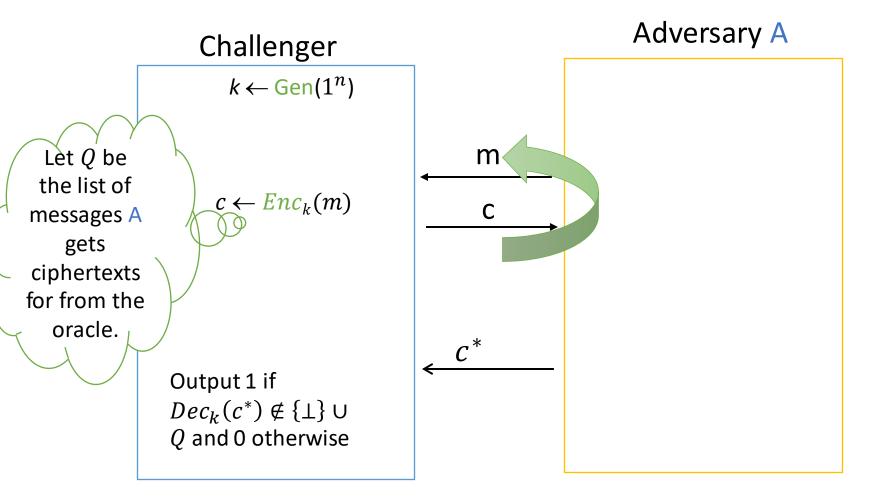
Unforgeable Encryption

 $\operatorname{EncForge}_{\mathbf{A},\Pi}(1^n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$.
- 2. Let c^* be the output of $A^{Enc_k(\cdot)}(1^n)$. Let Q be the list of messages A gets ciphertexts for from the oracle.
- 3. Output 1 if $Dec_k(c^*) \notin \{\bot\} \cup Q$ and 0 otherwise.

 $\Pi = (Gen, Enc, Dec) \text{ is}$ unforgeable if $\forall \text{ PPT } \textbf{A} \text{ it holds that:}$ $\Pr[\text{EncForge}_{\textbf{A},\Pi} = 1] \leq \text{negl}(n)$

Unforgeable Encryption (Pictorially) $EncForge_{A,\Pi}(1^n)$



Is this scheme unforgeable?

No!

Let *F* be a *PRF*: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$.

- $Gen(1^n)$: Choose uniform $k \in \{0,1\}^n$ and output it as the key
- $Enc_k(m)$: On input a message $m \in \{0,1\}^n$, sample $r \leftarrow U_n$ output the ciphertext c as $c \coloneqq \langle r, F_k(r) \oplus m \rangle$
- $\operatorname{Dec}_{k}^{\circ}(c)$: On input a ciphertext $c = \langle r, s \rangle$ output the message

$$m \coloneqq F_{\mathbf{k}}(r) \oplus s$$

Is this PRF-based CPA-secure encryption scheme unforgeable?

Authenticated Encryption

• A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

CCA-Security

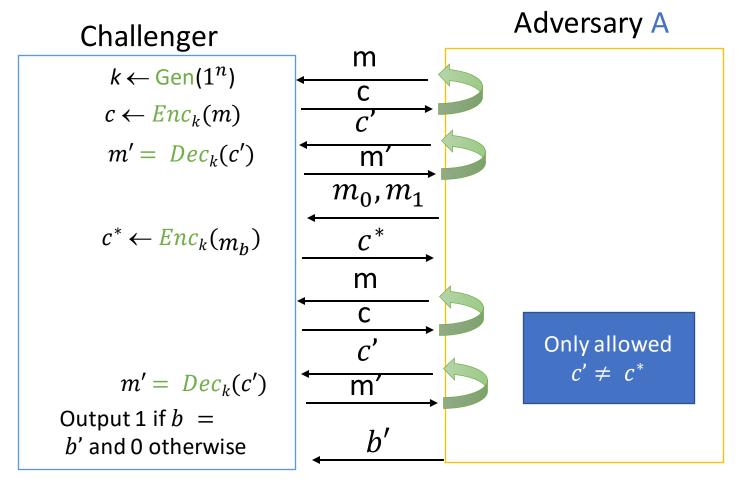
 $\operatorname{PrivK}_{\mathbf{A},\Pi}^{\operatorname{CCA}}(n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$, $A^{Enc_k(\cdot), Dec_k(\cdot)}$ outputs $m_0, m_1 \in \{0, 1\}^*, |m_0| = |m_1|$.
- 2. $b \leftarrow \{0,1\}, c^* \leftarrow Enc_k(m_b)$
- 3. c^* is given $A^{Enc_k(\cdot), Dec_k(\cdot)}$
- 4. $A^{Enc_k(\cdot), Dec_k(\cdot)}$ (query not allowed on c^*) output b'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under ciphertext attack, or is *CCA-secure* if \forall PPT *A* it holds that:

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{CCA} = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n)$$

CCA-Security (Pictorially) $PrivK^{CCA}_{A,\Pi}(n)$



Authenticated Encryption

• A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

Hard to come up with legitimate looking

ciphertexts of new messages!

The power of decryption queries doesn't help!

Intuitively

- Can we have encryption scheme that is unforgeable but not CCA secure?
 - Perhaps, it is possible to modify a given ciphertext and get a new ciphertext encrypting the same message. This scheme would still be unforgeable but not CCA secure.
- Can we have encryption schemes that is CCA secure but not unforgeable?
 - Perhaps, it is possible to come up with a fresh ciphertext encrypting a new message. This scheme would still be CCA secure but not unforgeable.

Authenticated Encryption Construction

- Let (Enc, Dec) be CPA secure and (Mac, Vrfy) be unforgeable.
- Encrypt and Authenticate

$$c \leftarrow Enc_{k_E}(m)$$
 $t \leftarrow Mac_{k_M}(m)$

• Authenticate then Encrypt

$$t \leftarrow Mac_{k_M}(m) \quad c \leftarrow Enc_{k_E}(m||t)$$

• Encrypt then Authenticate

$$c \leftarrow Enc_{k_E}(m)$$
 $t \leftarrow Mac_{k_M}(c)$

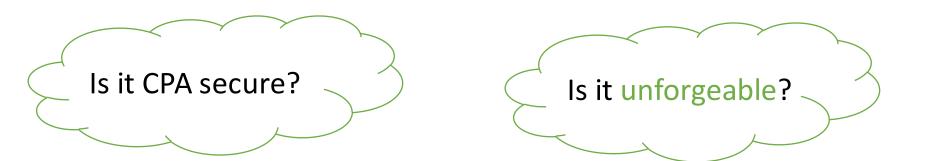
Encrypt and Authenticate

- $c \leftarrow Enc_{k_E}(m)$ $t \leftarrow Mac_{k_M}(m)$
- The recipient decrypts *c* to get *m* and accepts only if *t* is a valid tag on the message *m*.

 This is insecure because Mac does not offer secrecy. Mac could leak the entire message. May not even be CPA secure.

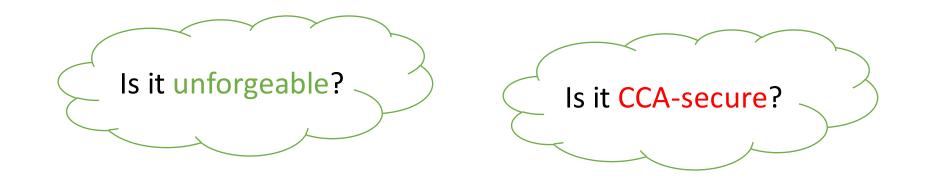
Authenticate then Encrypt

- $t \leftarrow Mac_{k_M}(m)$ $c \leftarrow Enc_{k_E}(m||t)$
- The recipient decrypts *c* to get *m*||*t* and accepts only if *t* is a valid tag on the message *m*.
- This is insecure as *Enc* is only CPA secure. Given *c* the attack can get *c*' that encropts the same message as *c*. This scheme will not be CCA-secure.



Encrypt then Authenticate

- $c \leftarrow Enc_{k_E}(m)$ $t \leftarrow Mac_{k_M}(c)$
- The recipient accepts only if *t* is a valid tag on the ciphertext *c* and in this case decrypts *c* to get *m*.
- This is secure <u>authenticated encryption</u> scheme if Mac is strongly unforgeable.



Can we use the same key?

- Set $k = k_E = k_M$. We have the encrypt and authenticate paradigm looks like $c \leftarrow Enc_k(m)$ $t \leftarrow Mac_k(c)$
- Is it secure?
- No! Let $Enc_k(m) = F_k(m||r)$, where $m \in \{0,1\}^{n/2}$ and r is uniform in $\{0,1\}^{n/2}$. And $Mac_k(m) = F_k^{-1}(m)$.
 - $Enc_k(m)$, $Mac_k(Enc_k(m)) = F_k(m||r)$, $F_k^{-1}(F_k(m||r))$

Secure Communication

- Re-ordering attack
- Replay attack
- Reflection attack
- Can be solved using counters and a direction bit as part of the sent messages.

Thank You!

