CS171: Cryptography

Lecture 11

Sanjam Garg

Cryptographic Hash Functions

Hash Functions

 Cryptographic Hash Functions: a deterministic function mapping an arbitrary long input string to a shorter output string.

- Hash functions can be keyed or unkeyed
 - In theory: Keyed
 - In practice: Unkeyed (fix a key once and for all)

Hash Function Definition

- Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$
 - A collision is distinct x and x' such that H(x) = H(x')
- Classical use is data-structures where collisions are *undesirable*.
- However, for cryptographic hash functions, this will be a *requirement*.
- Even when an attacker is maliciously trying to find collisions.

Hash Function Definition

- Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$
 - A collision is distinct x and x' such that H(x) = H(x')
- A hash function (with output length ℓ) is a pair of PPT algorithms (*Gen*, *H*) satisfying the following:
 - $Gen(1^n)$: Outputs s.
 - *H*: On input a key *s* and a string $x \in \{0,1\}^*$ output a string $H^s(x) \in \{0,1\}^{\ell(n)}$ s is public
- If H^s is defined only for inputs $\{0,1\}^{\ell'(n)}$ where $\ell'(n) > \ell(n)$, then (Gen, H) is a fixed-length hash function for inputs of length ℓ' .

Hash Function Security

 $HashColl_{A,\Pi}(n)$

- 1. Sample $s \leftarrow \text{Gen}(1^n)$.
- 2. Let x, x' be the output of $A(1^n, s)$.
- 3. Output 1 if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$ and 0 otherwise.

 $\Pi = (Gen, H) \text{ is}$ collision resistant if $\forall \text{ PPT } A \text{ it holds that:}$ $\Pr[HashColl_{A,\Pi}(n) = 1] \leq \text{ negl(n)}$

No secrets!

Hash Function: In practice

- Have a fixed output length just like block ciphers
- Also, they are unkeyed.
 - Problematic in theory

Generic Attacks on Hash Functions

- Hash function $H: \{0,1\}^{\ell'} \to \{0,1\}^{\ell}$ where $\ell' > \ell$
 - A collision is distinct x and x' such that H(x) = H(x')
- Can we find collisions?
- Yes, let $x_1, \dots x_{2^{\ell}+1}$ be arbitrary distinct values in $\{0,1\}^{\ell'}$
- Then we have that $\exists i, j$ such that $H(x_i) = H(x_j)$

Will drop the superscript *s* which is now implicit.

Generic Attacks on Hash Functions

- Hash function $H: \{0,1\}^{\ell'} \to \{0,1\}^{\ell}$ where $\ell' > \ell$
 - A collision is distinct x and x' such that H(x) = H(x')
- Can we find collisions faster?
- Let $x_1, ..., x_q$ be distinct values in $\{0,1\}^{\ell'}$ then what is the probability that we will find a collision?
- When $q > 2^{\ell}$ then the probability is 1, what if q is smaller?
- Important: A much smaller value of q suffices, i.e. $2^{\ell/2}$

Heuristic Analysis

View H as a random function

For $x_1, \dots x_q$ Pr $\left[\exists i, j \ H(x_i) = H(x_j)\right] \approx \frac{q^2}{2 \cdot 2^\ell}$ • Thus, probability is ½ for $q = \Theta(2^{\ell/2})$

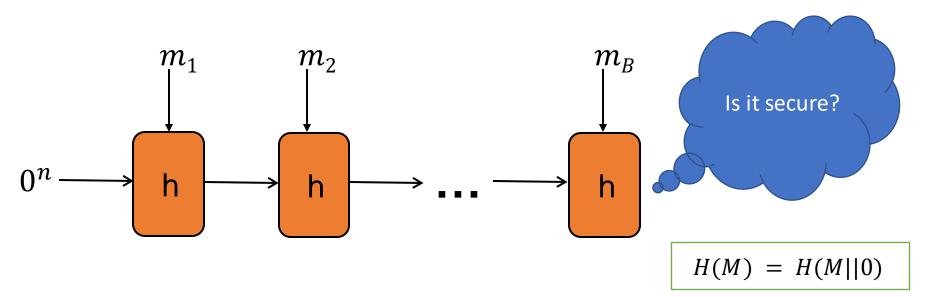
- Birthday problem: What is the probability that q people have birthday on the same day of the year?
 - Only need $\sqrt{365} \approx 23$ people to get a collision with probability ¹/₂
- Attempt 1: The probability two hashes collide is $1/2^{\ell}$. Thus, probability of collision is $\binom{q}{2} \cdot 1/2^{\ell}$.
 - Error: The probabilities are not independent.
 - See Appendix A.4 (in book) for analysis.

Implications of the birthday attack

- Need hash output to be $\ell = 2n$ to get security against attackers running in time 2^n .
- This is double the length of the keys needed for block ciphers.
- Thus, to get 128-bits of security we need a hash output of 256 bits.
- Necessary but not a sufficient condition
 - Birthday attack works for all hash functions, but there could be other more ``devastating'' attacks.

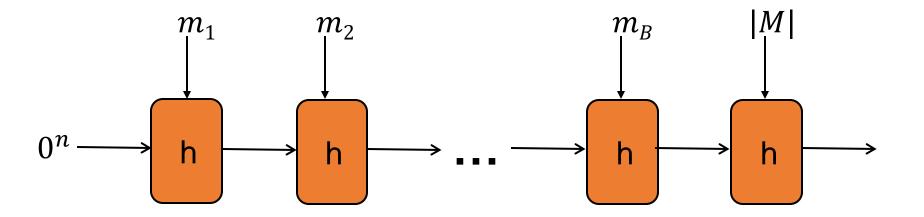
Domain Extension: The Merkle-Damgård Transform

- Given (Gen, h) a fixed length hash function from 2n bit inputs to n bit outputs. Construct (Gen, H) as follows:
- H(M): Parse M as $m_1 \dots m_B$, where m_B is padded with 0s to make it of appropriate length



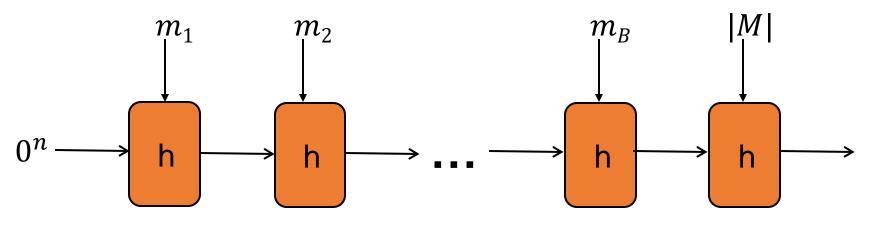
Domain Extension: The Merkle-Damgård Transform

- Given (Gen, h) a fixed length hash function from 2n bit inputs to n bit outputs. Construct (Gen, H) as follows:
- H(M): Parse M as $m_1 \dots m_B$, where m_B is padded with 0s to make it of appropriate length



Domain Extension: The Merkle-Damgård Transform

• If h is collision-resistant, then so is H.



- Proof: Collision on H
 - Say $H(m_1, ..., m_B) = H(m'_1, ..., m'_{B'})$
 - $|M| \neq |M'|$, then $h(\cdot, |M|) = h(\cdot, |M'|)$
 - |M| = |M'|, largest *i* such that $h(\cdot, m_i) = h(\cdot, m'_i)$

MACs using Hash Functions: Hash-and-MAC

- Previously, saw construction of MACs from PRF/block-cipher
- Also, CBC-MAC allowed to construct MACs with short tag lengths for arbitrary length messages
- Hash-and-MAC paradigm to do the same.

Hash-and-MAC

- Let (Gen, Mac, Vrfy) be a MAC on messages of length l(n) and (Gen_H, H) be a hash function with output length l(n). Then MAC (Gen', Mac', Vrfy') for arbitrary-length messages is:
- $Gen'(1^n)$: Output k' = (k, s) where $k \leftarrow Gen(1^n)$ and $s \leftarrow Gen_H(1^n)$.
- $Mac'_{k'}(m \in \{0,1\}^*)$: Output $Mac_k(H^s(m))$
- $Vrfy'_{k'}(m,t)$: Output 1 iff $Vrfy_k(H^s(m),t) = 1$.

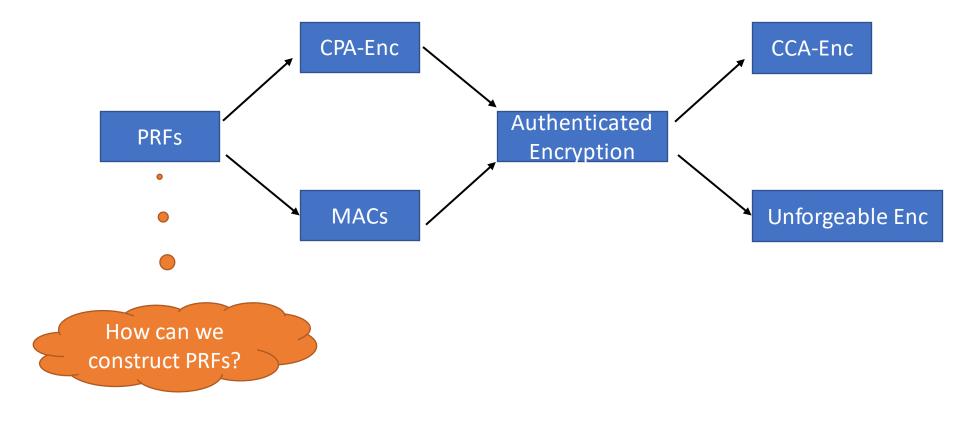
Security

- If the MAC is secure for fixed-length messages and H is collision-resistant, then the construction on previous slide is a secure MAC for arbitrary-length messages.
- Proof Sketch: Say the attacker outputs (m^*, t^*)
 - Case I: $H(m^*) = H(m_i)$ for some *i*, then we have a collision on *H*.
 - Case II: $H(m^*) \neq H(m_i)$ for all *i*, then we have a forgery for the underlying fixed-length MAC.

Other Applications

- Blockchains
- Virus Fingerprinting
- Deduplication
- Peer-to-peer (P2P) file sharing

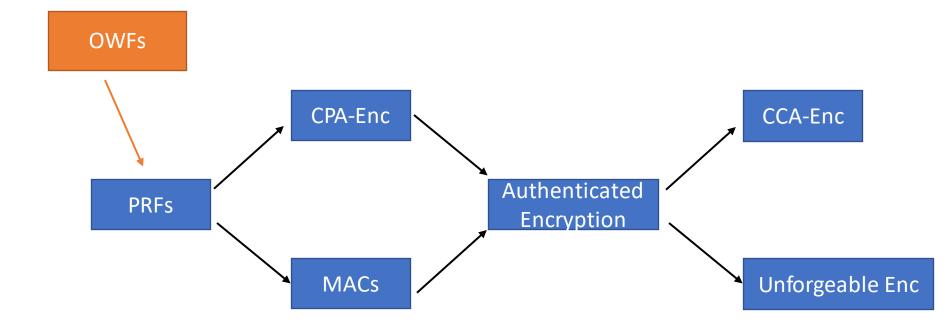
See So Far...



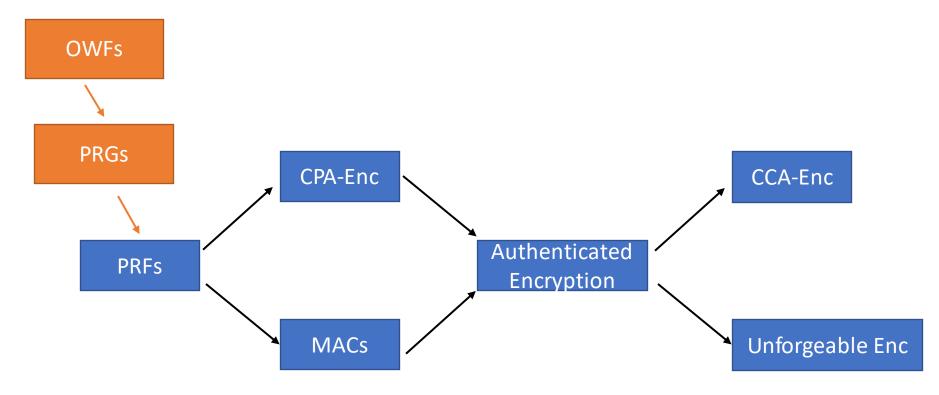
Constructions of Arigrous approach! PRFs/Block-Ciphers

- Theoretical Constructions*
- Practical Constructions

One-Way Functions

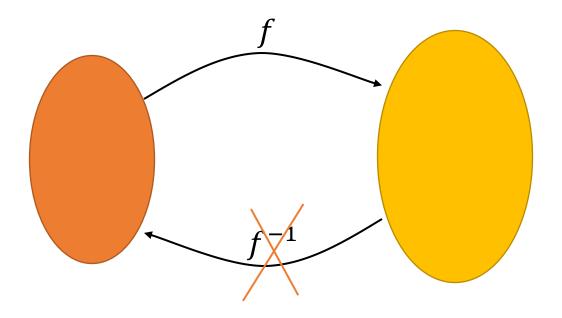


More accurately...



Define: One-Way Functions

A function f: {0,1}* → {0,1}* that is easy to compute but hard to invert

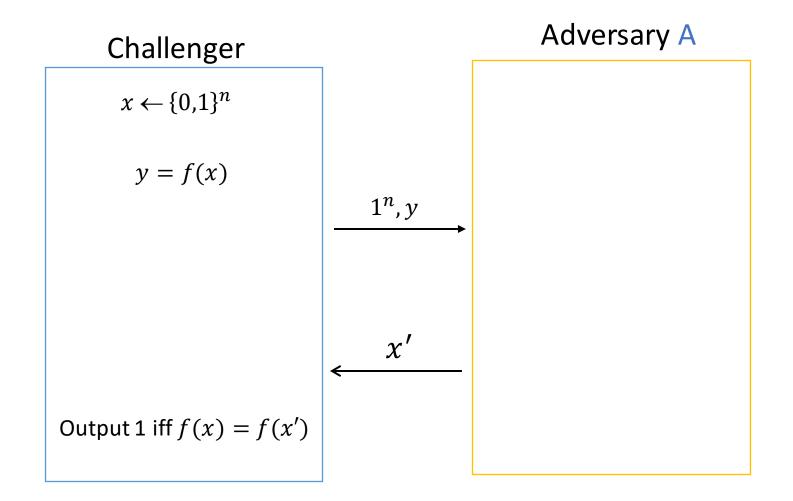


One-Way Functions: Formally

- A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is a one-way function if:
- (easy to compute) There exists a polynomial-time algorithm M_f computing f; i.e., for all x, $M_f(x) = f(x)$.
- (hard to invert) For all PPT A, there is a negligible function *negl* such that $Pre_{n} \left[A(1^{n}, f(x)) f(f(x)) \right] \leq regular)$

 $\Pr_{x \leftarrow \{0,1\}^n} \left[A\left(1^n, f(x)\right) \in f^{-1}(f(x)) \right] \le negl(n)$

One-Way Functions (Pictorially)



Is g a OFW?

• Given: f is a OWF • $g(x) = \begin{cases} f(x) & \text{if } x \neq 0^n \\ x & \text{otherwise} \end{cases}$

• Yes, because $x = 0^n$ with negligible probability

Candidate One-Way Functions

• Factoring Based

$$f_{mult}(x,y) = x \cdot y$$

where x and y are two equal length primes.

Subset-sum Based

$$f_{SS}(x_1, ..., x_n, J) = (x_1, ..., x_n, [\sum_{j \in J} x_j \mod 2^n])$$

• Discrete-Log Based:

$$f_{p,g}(x) = [g^x \bmod p]$$

where p is large prime and (a special value) $g \in \{2, \dots p - 1\}$

Thank You!

