CS171: Cryptography

Lecture 13
Sanjam Garg

Key-Distribution is a problem

Drawbacks of
 Private-Key
 Cryptography

Storing a large number of keys is problematic

Inapplicability to open systems (cannot meet)

A Partial Solution: KeyDistribution Center

Public-Key Cryptography

Number Theoretic Background

- A group G, is a set with a binary operation -

1. Closure: $\forall g, h \in G$ we have that $g \cdot h \in G$
2. Existence of an identity: $\exists e \in G$ such that for $\forall g \in G$, such that $\mathrm{g} \cdot e=g=e \cdot g$. (Denote e by 1 sometime)
3. Existence of an inverse: $\forall g \in G, \exists h \in G$ such that g. $h=e=h \cdot g$.
4. Associativity: For all $g_{1}, g_{2}, g_{3} \in G$ we have that $\left(g_{1}\right.$. $\left.g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$

Example of a Group

- Is $(Z,+)$ a group?

1. Closure: $\forall g, h \in Z$ we have that $g+h \in Z$?
2. Existence of an identity: $\exists e \in Z$ such that for $\forall g \in Z$, such that $\mathrm{g}+e=g=e+g$?
3. Existence of an inverse: $\forall g \in Z, \exists h \in Z$ such that $g+$ $h=e=h+g$?
4. Associativity: For all $g_{1}, g_{2}, g_{3} \in Z$ we have that $\left(g_{1}+g_{2}\right)+g_{3}=g_{1}+\left(g_{2}+g_{3}\right)$

Example of a Group

- Is (Z, \cdot) a group?

1. Closure: $\forall g, h \in Z$ we have that $g \cdot h \in Z$?
2. Existence of an identity: $\exists e \in Z$ such that for $\forall g \in Z$, such that $g \cdot e=g=e \cdot g$?
3. Existence of an inverse: $\forall g \in Z, \exists h \in Z$ such that g. $h=e=h \cdot g$?
4. Associativity: For all $g_{1}, g_{2}, g_{3} \in Z$ we have that $\left(g_{1}\right.$. $\left.g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right) ?$

Example of a Group

- Let $N>1$ be an integer. Let G be the set $\{0,1, \ldots N-1\}$ with respect to addition modulo N (i.e., $a+b=a+b \bmod N$)
- Is $(G,+)$ a group?

1. Closure: $\forall g, h \in G$ we have that $g+h \in G$?
2. Existence of an identity: $\exists e \in G$ such that for $\forall g \in G$, such that $\mathrm{g}+e=g=e+g$?
3. Existence of an inverse: $\forall g \in G, \exists h \in G$ such that $g+$ $h=e=h+g$?
4. Associativity: For all $g_{1}, g_{2}, g_{3} \in G$ we have that $\left(g_{1}+g_{2}\right)+g_{3}=g_{1}+\left(g_{2}+g_{3}\right)$

More definitions for a group

- When G has a finite number of elements, then we say that G is finite and let $|G|$ denote the order of the group.
- We say that a group G is abelian if:
- (Commutativity): For all $g, h \in G, g \cdot h=h \cdot g$.
- Subgroup: (H, \cdot) is a subgroup of (G, \cdot) if
- (H, \cdot) is a group
- $H \subseteq G$

Which one is finite and abelian?

- $(Z,+)$
- $(G,+), \mathrm{G}=\{0,1, \ldots N-1\}$ with respect to addition modulo N

Group Exponentiation

- For a group, (G, \cdot) :
$g^{n}=g \cdot g \cdots g(n$ times $)$

Properties

- Theorem: Let G be a group and $a, b, c \in G$. If $a c=$ $b c$, then $a=b$. In particular, if $a c=c$ then a is the identity in G.
- Proof: Given $a c=b c$, multiple both sides with c^{-1} and we have that $a=b$. By the same argument, if $a c=c$ then a is the identity in G.

Properties

- Theorem: Let G be a finite group with order m. Then for any element $g \in G$, we have $g^{m}=1$.
- Proof: (We will prove only for the abelian case)

$$
\begin{gathered}
g_{1} \cdot g_{2} \ldots g_{m}=\left(g \cdot g_{1}\right) \ldots\left(g \cdot g_{m}\right) \\
=g^{m} \cdot\left(g_{1} \ldots g_{m}\right)
\end{gathered}
$$

Thus, $g^{m}=1$.

- Observe that $\forall i, j, g \cdot g_{i} \neq g \cdot g_{j}$

Group Exponentiation

- For a group, (G, \cdot), finite group with order m :
$g^{n}=g \cdot g \cdots g(n$ times $)$
- $\forall g, \in G$ and integer $x, g^{x}=g^{x \bmod m}$

More Groups Definitions

- Let G be a finite group of order m.
- Then for any $g \in G$, we can define $\langle g\rangle=$ $\left\{g^{1} \ldots g^{m}\right\}$.
- We know than $g^{m}=1$. Let $i \leq m$ be the smallest value such than $g^{i}=1$.
- As before, $g^{x}=g^{x \bmod i}$
- Lemma: i divides m, (We say i is the order of g)
- Proof: Assume $m=a i+b$, with $b<i$ then
- $1=g^{m}=g^{a i} \cdot g^{b}=g^{b}$. Which is a contradiction.

Cyclic Group

- A group G is a cyclic group $\exists g \in G$ such that $\langle g\rangle=G$.
- Also we say that g is a generator of G.
- Lemma: If G is a group of prime order p , then G is cyclic. Moreover, every element except the identity is a generator of G.
- Another example (no proof): If p is a prime then Z_{p}^{*} is a cyclic group of order $p-1 . Z_{p}^{*}=\{1, \ldots p-1\}, a \cdot b=$ $a \times b \bmod p$
- Example of cyclic group of prime order: If p and q are primes such that $2 q=p-1$, and let $g \in Z_{p}^{*}$ be an elements of order q. Then, $H=\langle g\rangle$ is of prime order.

The Discrete-Log Problem

- Let $\mathscr{G}\left(1^{n}\right)$ be a PPT algorithm that generates description of a cyclic group, i.e., order q (where $|q|=n$) and a generator g.
- Unique bit representation for each element and group operation can be performed in time polynomial in n.
- Sampling a uniform group element: Sample $x \leftarrow Z_{q}$ and compute g^{x}.

DLOG Problem

$\operatorname{DLog}_{\mathrm{A}, \mathscr{q}}(\mathrm{n})$

1. Run $\mathscr{G}\left(1^{n}\right)$ to obtain (G, g, q).
2. Pick uniform $h \in G$.
3. A is given (G, g, q, h) and it outputs x.
4. Output 1 if $g^{x}=h$ and 0 otherwise

Discrete-Log Problem is hard relative to g if
\forall PPT A \exists negl such that:

$$
\left|\operatorname{Pr}\left[\operatorname{DLog}_{A, q}(\mathrm{n})=1\right]\right| \leq \operatorname{neg} \mid(\mathrm{n}) .
$$

Collision Resistant Hash Functions

- (Gen, H)
- $\operatorname{Gen}\left(1^{n}\right)$:

1. $(G, g, q) \leftarrow q\left(1^{n}\right)$
2. Sample uniform group element h
3. Output $s=(G, g, q, h)$

- $H^{s}(x \| r)=g^{x} h^{r}$

Proof by Reduction (If $D L O G$ then CRHF)

Reduction/Adversary B

break

- Given: $H(x \| r)=$ $H\left(x^{\prime}| | r^{\prime}\right)$
- Or, $g^{x} h^{r}=g^{x^{\prime}} h^{r^{\prime}}$
- Or, $h=g^{\frac{x-x^{\prime}}{r^{\prime}-r}}$
- B outputs $\frac{x-x^{\prime}}{r^{\prime}-r}$

The Diffie-Hellman Problems

- The computational variant: given g^{x} and g^{y} compute $g^{x y}$
- The decisional variant: given g^{x} and g^{y} distinguish between $g^{x y}$ and a random group element.

Computational Diffie-Hellman Problem

$\mathrm{CDH}_{\mathrm{A}, \boldsymbol{q}}(\mathrm{n})$

1. Run $\mathscr{G}\left(1^{n}\right)$ to obtain (G, g, q).
2. $a, b \leftarrow Z_{q}^{*}$.
3. A is given
(G, g, q, g^{a}, g^{b}) and it outputs h.
4. Output 1 if $g^{a b}=h$ and 0 otherwise

CDH is hard relative to g if
$\forall P P T$ A \exists negl such that:

$$
\left|\operatorname{Pr}\left[\mathrm{CDH}_{\mathrm{A}, \mathscr{g}}^{(n)=1}\right]\right| \leq \operatorname{neg} \mid(\mathrm{n}) .
$$

Decisional Diffie-Hellman Problem

$\mathrm{DDH}_{\mathrm{A}, \mathfrak{g}}(\mathrm{n})$

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (G, g, q).
2. $a, b, r \leftarrow Z_{q}^{*}$. Sample a uniform bit c.
3. A is given
$\left(G, g, q, g^{a}, g^{b}, g^{a b+c r}\right)$ and it outputs c^{\prime}.
4. Output 1 if $c=c^{\prime}$ and 0 otherwise

Diffie-Hellman Problems

Key Exchange

- Correctness: $k=k_{\mathrm{A}}=k_{B}$
- Security (Informally): Eve listening on the channel should not be able to guess k.

Key Exchange: Security

$\mathrm{KE}_{\mathrm{A}, \Pi}^{e a v}$ (n)

1. Two parties holding 1^{n} execute Π. This results in a transcript Ω of the communication and a key k output for each party.
2. Sample a uniform bit b. If $b=0$, then set $k=$ k, else set \hat{k} uniformly.
3. A is given (Ω, \hat{k}) and it outputs b^{\prime}.
4. Output 1 if $b^{\prime}=b$ and 0 otherwise

A key-exchange protocol Π is secure if
\forall PPT A \exists negl such that:
$\left|\operatorname{Pr}\left[\mathrm{KE}_{A, \Pi}^{e a v}(n)=1\right]\right| \leq 1 / 2+\operatorname{neg} \mid(n)$.

$$
\begin{aligned}
& \text { The Diffie-Hellman Key Exchange } \\
& \text { Protocol } \\
& \substack{x \leftarrow Z_{q} \\
h_{A}:=g^{x}} \\
& k_{A}:=h_{B}^{x} \\
& \begin{array}{c}
G, g, q \text { an be fixed } \\
\text { once and for all. } \\
h_{B}, h_{A}
\end{array} \\
& \text { Alice }
\end{aligned}
$$

- Correctness: $k=k_{\mathrm{A}}=k_{B}$
- Security (Informally): Follows from the DDH assumption.
- Subtle point: The key is indistinguishable from a random group element not a random string.

Public-Key Cryptography

- Public-Key Encryption
- Digital Signatures

Public-Key Encryption

No secret-keys.

Thank You!

