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Drawbacks of 
Private-Key 
Cryptography

Key-Distribution is a 
problem

Storing a large 
number of keys is 
problematic

Inapplicability to 
open systems 
(cannot meet)



A Partial Solution: Key-
Distribution Center

KDC

Alice Bob
Let’s talk using key in 𝐸𝑛𝑐𝑘𝐵

(𝑘)



Public-Key Cryptography



Number Theoretic Background

• A group 𝐺, is a set with a binary operation ⋅
1. Closure: ∀𝑔, ℎ ∈ 𝐺 we have that g ⋅ ℎ ∈ 𝐺

2. Existence of an identity: ∃𝑒 ∈ 𝐺 such that for ∀𝑔 ∈ 𝐺, 
such that g ⋅ 𝑒 = 𝑔 = 𝑒 ⋅ 𝑔. (Denote 𝑒 by 1 sometime)

3. Existence of an inverse: ∀𝑔 ∈ 𝐺, ∃ℎ ∈ 𝐺 such that g ⋅
ℎ = 𝑒 = ℎ ⋅ 𝑔.

4. Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺 we have that (𝑔1⋅
𝑔2) ⋅ 𝑔3 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑔3)



Example of a Group

• Is 𝑍, +  a group?
1. Closure: ∀𝑔, ℎ ∈ 𝑍 we have that g + ℎ ∈ 𝑍?

2. Existence of an identity: ∃𝑒 ∈ 𝑍 such that for ∀𝑔 ∈ 𝑍, 
such that g + 𝑒 = 𝑔 = 𝑒 + 𝑔?

3. Existence of an inverse: ∀𝑔 ∈ 𝑍, ∃ℎ ∈ 𝑍 such that g +
ℎ = 𝑒 = ℎ + 𝑔?

4. Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝑍 we have that 
(𝑔1+𝑔2) + 𝑔3 = 𝑔1 + (𝑔2 + 𝑔3)



Example of a Group

• Is 𝑍,⋅  a group?
1. Closure: ∀𝑔, ℎ ∈ 𝑍 we have that g ⋅ ℎ ∈ 𝑍?

2. Existence of an identity: ∃𝑒 ∈ 𝑍 such that for ∀𝑔 ∈ 𝑍, 
such that g ⋅ 𝑒 = 𝑔 = 𝑒 ⋅ 𝑔?

3. Existence of an inverse: ∀𝑔 ∈ 𝑍, ∃ℎ ∈ 𝑍 such that g ⋅
ℎ = 𝑒 = ℎ ⋅ 𝑔?

4. Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝑍 we have that (𝑔1⋅
𝑔2) ⋅ 𝑔3 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑔3)?



Example of a Group

• Let 𝑁 >  1 be an integer. Let 𝐺 be the set 
{0,1, … 𝑁 − 1} with respect to addition modulo N 
(i.e., 𝑎 +  𝑏 =  𝑎 + 𝑏 𝑚𝑜𝑑 𝑁)

• Is 𝐺, +  a group?
1. Closure: ∀𝑔, ℎ ∈ 𝐺 we have that g + ℎ ∈ 𝐺?

2. Existence of an identity: ∃𝑒 ∈ 𝐺 such that for ∀𝑔 ∈ 𝐺, 
such that g + 𝑒 = 𝑔 = 𝑒 + 𝑔?

3. Existence of an inverse: ∀𝑔 ∈ 𝐺, ∃ℎ ∈ 𝐺 such that g +
ℎ = 𝑒 = ℎ + 𝑔?

4. Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺 we have that 
(𝑔1+𝑔2) + 𝑔3 = 𝑔1 + (𝑔2 + 𝑔3)



More definitions for a group

• When 𝐺 has a finite number of elements, then we 
say that 𝐺 is finite and let |𝐺| denote the order of 
the group. 

• We say that a group G is abelian if:
• (Commutativity): For all 𝑔, ℎ ∈  𝐺, 𝑔 ⋅ ℎ = ℎ ⋅ 𝑔.

• Subgroup: (𝐻,⋅) is a subgroup of (𝐺,⋅) if 
• (𝐻,⋅) is a group

• 𝐻 ⊆ 𝐺



Which one is finite and abelian?

• 𝑍, +

• 𝐺, + , G = {0,1, … 𝑁 − 1} with respect to addition 
modulo N



Group Exponentiation

• For a group, (𝐺,⋅):

𝑔𝑛 = 𝑔 ⋅ 𝑔 ⋯ 𝑔 (𝑛 times)



Properties

• Theorem: Let 𝐺 be a group and 𝑎, 𝑏, 𝑐 ∈  𝐺. If 𝑎𝑐 =
 𝑏𝑐, then 𝑎 =  𝑏. In particular, if 𝑎𝑐 =  𝑐 then 𝑎 is 
the identity in 𝐺. 

• Proof: Given 𝑎𝑐 =  𝑏𝑐, multiple both sides with 
𝑐−1 and we have that 𝑎 =  𝑏. By the same 
argument, if 𝑎𝑐 =  𝑐 then 𝑎 is the identity in 𝐺. 



Properties

• Theorem: Let 𝐺 be a finite group with order 𝑚. 
Then for any element 𝑔 ∈  𝐺, we have 𝑔𝑚  = 1.

• Proof: (We will prove only for the abelian case)
𝑔1 ⋅ 𝑔2 … 𝑔𝑚 = 𝑔 ⋅ 𝑔1 … 𝑔 ⋅ 𝑔𝑚

= 𝑔𝑚 ⋅ (𝑔1 … 𝑔𝑚)

Thus, 𝑔𝑚  =  1.

• Observe that ∀ 𝑖, 𝑗, 𝑔 ⋅ 𝑔𝑖 ≠ 𝑔 ⋅ 𝑔𝑗



Group Exponentiation

• For a group, (𝐺,⋅), finite group with order 𝑚:

𝑔𝑛 = 𝑔 ⋅ 𝑔 ⋯ 𝑔 (𝑛 times)

• ∀ 𝑔, ∈ 𝐺 and integer 𝑥, 𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑚



More Groups Definitions

• Let 𝐺 be a finite group of order 𝑚. 

• Then for any 𝑔 ∈ 𝐺, we can define 𝑔 =
𝑔1 … 𝑔𝑚 .

• We know than 𝑔𝑚 = 1. Let 𝑖 ≤ 𝑚 be the smallest 
value such than 𝑔𝑖  =  1.

• As before, 𝑔𝑥  = 𝑔𝑥 𝑚𝑜𝑑 𝑖

• Lemma: 𝑖 divides 𝑚, (We say 𝑖 is the order of 𝑔)

• Proof: Assume 𝑚 = 𝑎 𝑖 + 𝑏, with 𝑏 <  𝑖 then

• 1 =  𝑔𝑚 = 𝑔𝑎𝑖 ⋅ 𝑔𝑏 = 𝑔𝑏. Which is a contradiction. 



Cyclic Group

• A group G is a cyclic group ∃𝑔 ∈ 𝐺 such that 𝑔 = 𝐺. 

• Also we say that 𝑔 is a generator of 𝐺. 

• Lemma: If G is a group of prime order p, then 𝐺 is 
cyclic. Moreover, every element except the identity is a 
generator of 𝐺.

• Another example (no proof): If 𝑝 is a prime then 𝑍𝑝
∗ is a 

cyclic group of order 𝑝 − 1. 𝑍𝑝
∗ = 1, … 𝑝 − 1 , 𝑎 ⋅ 𝑏 =

𝑎 × 𝑏 𝑚𝑜𝑑 𝑝

• Example of cyclic group of prime order: If 𝑝 and 𝑞 are 
primes such that 2𝑞 =  𝑝 − 1, and let g ∈ 𝑍𝑝

∗ be an 
elements of order 𝑞. Then, 𝐻 = ⟨𝑔⟩ is of prime order.



The Discrete-Log Problem

• Let G(1𝑛) be a PPT algorithm that generates 
description of a cyclic group, i.e., order 𝑞 (where 
|𝑞|  =  𝑛) and a generator 𝑔.

• Unique bit representation for each element and 
group operation can be performed in time 
polynomial in 𝑛.

• Sampling a uniform group element: Sample 𝑥 ← 𝑍𝑞  
and compute 𝑔𝑥.



DLOG Problem

DLog
A,G (n)

1. Run G(1𝑛) to obtain 
(𝐺, 𝑔, 𝑞).

2. Pick uniform ℎ ∈  𝐺.

3. A is given (𝐺, 𝑔, 𝑞, ℎ) 
and it outputs 𝑥.

4. Output 1 if 𝑔𝑥  =  ℎ 
and 0 otherwise

Discrete-Log Problem is 
hard relative to G if 

∀ 𝑃𝑃𝑇 𝐴 ∃ 𝑛𝑒𝑔𝑙 such 
that:

Pr DLog
A,G (n) = 1  ≤ negl(n).



Collision Resistant Hash Functions

• (𝐺𝑒𝑛, 𝐻)

• 𝐺𝑒𝑛 1𝑛 : 
1. 𝐺, 𝑔, 𝑞 ← G(1𝑛) 

2. Sample uniform group element h

3. Output 𝑠 =  (𝐺, 𝑔, 𝑞, ℎ)

• 𝐻𝑠(𝑥| 𝑟 = 𝑔𝑥ℎ𝑟



Proof by Reduction (If 𝐷𝐿𝑂𝐺 then 
CRHF)

Reduction/Adversary B

Adversary A

(𝐺, 𝑔, 𝑞, ℎ)

(𝐺, 𝑔, 𝑞, ℎ)

(𝑥, 𝑟), (𝑥’, 𝑟’)
break

• Given: 𝐻(𝑥||𝑟)  =
 𝐻(𝑥’||𝑟’)

• Or, 𝑔𝑥ℎ𝑟  = 𝑔𝑥′
ℎ𝑟′

• Or, ℎ = 𝑔
𝑥−𝑥′

𝑟′−𝑟  

• B outputs 
𝑥−𝑥′

𝑟′−𝑟



The Diffie-Hellman Problems

• The computational variant: given 𝑔𝑥 and 𝑔𝑦 
compute 𝑔𝑥𝑦

• The decisional variant: given 𝑔𝑥 and 𝑔𝑦 distinguish 
between 𝑔𝑥𝑦 and a random group element. 



Computational Diffie-Hellman 
Problem

CDH
A,G (n)

1. Run G(1𝑛) to obtain 
(𝐺, 𝑔, 𝑞).

2. 𝑎, 𝑏 ← 𝑍𝑞
∗.

3. A is given 
(𝐺, 𝑔, 𝑞, 𝑔𝑎 , 𝑔𝑏) and 
it outputs ℎ.

4. Output 1 if 𝑔𝑎𝑏  =  ℎ 
and 0 otherwise

CDH is hard relative to G 
if 

∀ 𝑃𝑃𝑇 𝐴 ∃ 𝑛𝑒𝑔𝑙 such 
that:

Pr CDH
A,G (n) = 1  ≤ negl(n).



Decisional Diffie-Hellman Problem

DDH
A,G (n)

1. Run G(1𝑛) to obtain 
(𝐺, 𝑔, 𝑞).

2. 𝑎, 𝑏, 𝑟 ← 𝑍𝑞
∗. Sample a 

uniform bit 𝑐.

3. A is given 
(𝐺, 𝑔, 𝑞, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏+𝑐𝑟) 
and it outputs 𝑐′.

4. Output 1 if 𝑐 = 𝑐′and 0 
otherwise

DDH is hard relative to G if 

∀ 𝑃𝑃𝑇 𝐴 ∃ 𝑛𝑒𝑔𝑙 such that:

Pr DDH
A,G  (n) = 1  ≤ ½ + 

negl(n).



Diffie-Hellman Problems

OWF

DLOG

CRHF

CDH DDH⟸⟸

⟸

⟸

• If 𝑝 and 𝑞 are primes such 
that 𝑟𝑞 =  𝑝 − 1 and let g ∈
𝑍𝑝

∗  be an elements of order 

𝑞. Let 𝐻 = ⟨𝑔⟩  be the group 
of order 𝑞. 

• Elliptic Curve Groups



Key Exchange

Alice Bob

𝑘A 𝑘𝐵

• Correctness: 𝑘 =  𝑘A = 𝑘𝐵

• Security (Informally): Eve listening on the channel 
should not be able to guess 𝑘.



Key Exchange: Security

KEA,Π
𝑒𝑎𝑣  (n)

1. Two parties holding 1𝑛 
execute Π. This results in 
a transcript Ω of the 
communication and a key 
𝑘 output for each party.

2. Sample a uniform bit 𝑏. If 
𝑏 =  0, then set 𝑘 =
𝑘, else set 𝑘 uniformly.

3. A is given (Ω, 𝑘) and it 
outputs 𝑏′.

4. Output 1 if 𝑏′ = 𝑏 and 0 
otherwise

A key-exchange protocol Π is 
secure if 

∀ 𝑃𝑃𝑇 𝐴 ∃ 𝑛𝑒𝑔𝑙 such that:
Pr KEA,Π

𝑒𝑎𝑣 (n) = 1  ≤ ½ + negl(n).



The Diffie-Hellman Key Exchange 
Protocol

Alice Bob

𝐺, 𝑔, 𝑞, ℎ𝐴

𝑥 ← 𝑍𝑞

ℎ𝐴 ≔ 𝑔𝑥
ℎ𝐵 𝑦 ← 𝑍𝑞

ℎ𝐵 ≔ 𝑔𝑦

𝑘𝐴 ≔ ℎ𝐵
𝑥

𝑘𝐵 ≔ ℎ𝐴
𝑦

• Correctness: 𝑘 =  𝑘A = 𝑘𝐵

• Security (Informally): Follows from the DDH 
assumption. 

• Subtle point: The key is indistinguishable from a 
random group element not a random string. 

𝐺, 𝑔, 𝑞 can be fixed 
once and for all. 



Public-Key Cryptography
• Public-Key Encryption

• Digital Signatures



Public-Key Encryption

Alice

Bob

(𝑝𝑘𝐴, 𝑠𝑘𝐴)

𝑝𝑘𝐴

Public (but 
authenticated) 

channel

Only one secret-
key.

No secret-keys.

𝑐

Alice can decrypt!



Thank You!
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