CS171: Cryptography

Lecture 13

Sanjam Garg

Drawbacks of Private-Key Cryptography

Key-Distribution is a problem

Storing a large number of keys is problematic

Inapplicability to open systems (cannot meet)

A Partial Solution: Key-Distribution Center

Public-Key Cryptography

Number Theoretic Background

- A group G, is a set with a binary operation \cdot
 - **1.** Closure: $\forall g, h \in G$ we have that $g \cdot h \in G$
 - **2.** Existence of an identity: $\exists e \in G$ such that for $\forall g \in G$, such that $g \cdot e = g = e \cdot g$. (Denote *e* by 1 sometime)
 - 3. Existence of an inverse: $\forall g \in G, \exists h \in G \text{ such that } g \cdot h = e = h \cdot g$.
 - 4. Associativity: For all $g_1, g_2, g_3 \in G$ we have that $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Example of a Group

- Is (*Z*, +) a group?
 - **1.** Closure: $\forall g, h \in Z$ we have that $g + h \in Z$?
 - **2.** Existence of an identity: $\exists e \in Z$ such that for $\forall g \in Z$, such that g + e = g = e + g?
 - 3. Existence of an inverse: $\forall g \in Z, \exists h \in Z \text{ such that } g + h = e = h + g$?
 - 4. Associativity: For all $g_1, g_2, g_3 \in Z$ we have that $(g_1+g_2) + g_3 = g_1 + (g_2+g_3)$

Example of a Group

- Is (Z, \cdot) a group?
 - **1.** Closure: $\forall g, h \in Z$ we have that $g \cdot h \in Z$?
 - **2.** Existence of an identity: $\exists e \in Z$ such that for $\forall g \in Z$, such that $g \cdot e = g = e \cdot g$?
 - 3. Existence of an inverse: $\forall g \in Z, \exists h \in Z \text{ such that } g \cdot h = e = h \cdot g$?
 - 4. Associativity: For all $g_1, g_2, g_3 \in Z$ we have that $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$?

Example of a Group

- Let N > 1 be an integer. Let G be the set {0,1, ... N - 1} with respect to addition modulo N (i.e., $a + b = a + b \mod N$)
- Is (*G*, +) a group?
 - **1.** Closure: $\forall g, h \in G$ we have that $g + h \in G$?
 - **2.** Existence of an identity: $\exists e \in G$ such that for $\forall g \in G$, such that g + e = g = e + g?
 - 3. Existence of an inverse: $\forall g \in G, \exists h \in G$ such that g + h = e = h + g?
 - 4. Associativity: For all $g_1, g_2, g_3 \in G$ we have that $(g_1+g_2) + g_3 = g_1 + (g_2+g_3)$

More definitions for a group

- When G has a finite number of elements, then we say that G is finite and let |G| denote the order of the group.
- We say that a group G is abelian if:
 - (Commutativity): For all $g, h \in G, g \cdot h = h \cdot g$.
- Subgroup: (H, \cdot) is a subgroup of (G, \cdot) if
 - (H, \cdot) is a group
 - $H \subseteq G$

Which one is finite and abelian?

- (*Z*,+)
- $(G, +), G = \{0, 1, \dots N 1\}$ with respect to addition modulo N

Group Exponentiation

• For a group, (G, \cdot) : $g^n = g \cdot g \cdots g$ (*n* times)

Properties

- Theorem: Let G be a group and $a, b, c \in G$. If ac = bc, then a = b. In particular, if ac = c then a is the identity in G.
- Proof: Given ac = bc, multiple both sides with c^{-1} and we have that a = b. By the same argument, if ac = c then a is the identity in G.

Properties

- Theorem: Let G be a finite group with order m. Then for any element $g \in G$, we have $g^m = 1$.
- Proof: (We will prove only for the abelian case) $g_1 \cdot g_2 \dots g_m = (g \cdot g_1) \dots (g \cdot g_m)$ $= g^m \cdot (g_1 \dots g_m)$

Thus, $g^m = 1$.

• Observe that $\forall i, j, g \cdot g_i \neq g \cdot g_j$

Group Exponentiation

- For a group, (G, \cdot) , finite group with order m: $g^n = g \cdot g \cdots g$ (*n* times)
- $\forall g \in G$ and integer $x, g^x = g^{x \mod m}$

More Groups Definitions

- Let G be a finite group of order m.
- Then for any $g \in G$, we can define $\langle g \rangle = \{g^1 \dots g^m\}$.
- We know than $g^m = 1$. Let $i \le m$ be the smallest value such than $g^i = 1$.
- As before, $g^x = g^{x \mod i}$
- Lemma: i divides m, (We say i is the order of g)
- Proof: Assume m = a i + b, with b < i then
- $1 = g^m = g^{ai} \cdot g^b = g^b$. Which is a contradiction.

Cyclic Group

- A group G is a cyclic group $\exists g \in G$ such that $\langle g \rangle = G$.
- Also we say that g is a generator of G.
- Lemma: If G is a group of prime order p, then G is cyclic. Moreover, every element except the identity is a generator of G.
- Another example (no proof): If p is a prime then Z_p^* is a cyclic group of order p-1. $Z_p^*=\{1,\ldots p-1\}, a\cdot b=a\times b \bmod p$
- Example of cyclic group of prime order: If p and q are primes such that 2q = p 1, and let $g \in Z_p^*$ be an elements of order q. Then, $H = \langle g \rangle$ is of prime order.

The Discrete-Log Problem

- Let $\mathscr{G}(1^n)$ be a PPT algorithm that generates description of a cyclic group, i.e., order q (where |q| = n) and a generator g.
- Unique bit representation for each element and group operation can be performed in time polynomial in *n*.
- Sampling a uniform group element: Sample $x \leftarrow Z_q$ and compute g^x .

DLOG Problem

 $DLog_{A, \mathcal{G}}(n)$

- 1. Run $\mathscr{G}(1^n)$ to obtain (G, g, q).
- 2. Pick uniform $h \in G$.
- 3. A is given (G, g, q, h)and it outputs x.
- 4. Output 1 if $g^x = h$ and 0 otherwise

Discrete-Log Problem is hard relative to \mathcal{G} if $\forall PPT A \exists negl$ such that: $|\Pr[DLog_{A,\mathcal{G}}(n) = 1]| \leq negl(n).$

Collision Resistant Hash Functions

- (Gen, H)
- $Gen(1^n)$:
 - 1. $(G, g, q) \leftarrow \mathcal{G}(1^n)$
 - 2. Sample uniform group element h
 - 3. Output s = (G, g, q, h)
- $H^s(x||r) = g^x h^r$

Proof by Reduction (If *DLOG* then CRHF)

• Given: H(x||r) =H(x'||r')

• Or,
$$g^x h^r = g^{x'} h^{r'}$$

• Or,
$$h = g^{\frac{x-x}{r'-r}}$$

• B outputs
$$\frac{x-x'}{r'-r}$$

The Diffie-Hellman Problems

- The computational variant: given g^x and g^y compute g^{xy}
- The decisional variant: given g^x and g^y distinguish between g^{xy} and a random group element.

Computational Diffie-Hellman Problem

CDH_{A,} (n)

1. Run $\mathscr{G}(1^n)$ to obtain (G, g, q).

2.
$$a, b \leftarrow Z_q^*$$
.

3. A is given

$$(G, g, q, g^a, g^b)$$
 and
it outputs h .

4. Output 1 if $g^{ab} = h$ and 0 otherwise CDH is hard relative to \mathscr{G} if $\forall PPT A \exists negl such$ that: $\left|\Pr\left[CDH_{A,\mathscr{G}}(n)=1\right]\right| \leq negl(n).$

Decisional Diffie-Hellman Problem

- $DDH_{A, \mathcal{G}}(n)$
- 1. Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- 2. $a, b, r \leftarrow Z_q^*$. Sample a uniform bit c.
- 3. A is given $(G, g, q, g^a, g^b, g^{ab+cr})$ and it outputs c'.
- 4. Output 1 if c = c' and 0 otherwise

DDH is hard relative to \mathscr{G} if $\forall PPT A \exists negl \text{ such that:}$ $|\Pr[DDH_{A,\mathscr{G}}(n) = 1]| \leq \frac{1}{2} + negl(n).$

Diffie-Hellman Problems

- Correctness: $k = k_A = k_B$
- Security (Informally): Eve listening on the channel should not be able to guess k.

Key Exchange: Security

 $\mathrm{KE}^{eav}_{\mathbf{A},\Pi}$ (n)

- 1. Two parties holding 1^n execute Π . This results in a transcript Ω of the communication and a key k output for each party.
- 2. Sample a uniform bit b. If b = 0, then set $\hat{k} = k$, else set \hat{k} uniformly.
- 3. A is given (Ω, \hat{k}) and it outputs b'.
- 4. Output 1 if b' = b and 0 otherwise

A key-exchange protocol Π is secure if ∀ *PPT A* ∃ *negl* such that: $|\Pr[KE_{A,\Pi}^{eav}(n) = 1]| \le \frac{1}{2} + negl(n).$

- Correctness: $k = k_A = k_B$
- Security (Informally): Follows from the DDH assumption.
- Subtle point: The key is indistinguishable from a random group element not a random string.

Public-Key Cryptography

- Public-Key Encryption
- Digital Signatures

Thank You!

