## CS171: Cryptography

Lecture 15

Sanjam Garg



The *functionality* of public-key encryption at the (asymptotic) *efficiency* of private-key encryption!

### Hybrid Encryption: More Formally

- Let  $\Pi$  be a public-key scheme, and let  $\Pi'$  be a private-key scheme
- Define  $\Pi_{hy}$  as follows:
  - $\operatorname{Gen}_{hy} = \operatorname{Gen}_{\Pi}$
  - $Enc_{hy}(pk,m)$ 
    - 1. Sample  $k \leftarrow \{0,1\}^n$
    - 2.  $c \leftarrow Enc(pk, k)$
    - 3.  $c' \leftarrow Enc'_k(m)$
    - 4. Output (c, c')
  - $Dec_{hy}(sk, (c, c'))$ 
    - 1. Decrypt c to get k
    - 2. Use k to decrypt c and recover m.

### Security of hybrid encryption

- If  $\Pi$  and  $\Pi'$  are CPA secure, then  $\Pi_{hy}$  is also CPA secure.
  - In fact, even if  $\Pi'$  is EAV secure
- If  $\Pi$  and  $\Pi'$  are CCA secure, then  $\Pi_{hy}$  is also CCA secure.

### CPA Security Proof

- $H_0$ : A's input is  $Enc(pk, k), Enc'_k(m_b)$ where  $k \leftarrow \{0,1\}^n$
- $H_1$ : A's input is  $Enc(pk, r), Enc'_k(m_b)$ where  $k, r \leftarrow \{0,1\}^n$
- $H_2$ : A's input is  $Enc(pk, r), Enc'_k(0^{|m_b|})$ where  $k, r \leftarrow \{0,1\}^n$

### ElGamal Hybrid Encryption

- The private key k needs to be encoded as a group element
  - Not clear how to do it!
- Alternative: Rather than encryption a specific key k, encrypt a random group element M
  - And derive the key as k = H(M)

### Key Encapsulation Mechanism

- Lesson: Do not need CPA secure PKE for CPA secure hybrid encryption
- Sufficient to have a key encapsulation mechanism, or KEM for short
  - Takes as input a public-key and outputs a ciphertext c and a key k encapsulated in c
  - Correctness: k can be recovered from c using sk
  - Security: k is indistinguishable from uniform given pk and c (analogues of CPA/CCA security)
- Can be used to construct PKE by combining with private-key encryption

### Hybrid Encryption (PKE vs KEM)



Hybrid encryption

KEM/DEM

### Security

- If  $\Pi$  (KEM) and  $\Pi'$  are CPA secure, then  $\Pi_{hy}$  is also CPA secure.
  - In fact, even if  $\Pi'$  is EAV secure
- If  $\Pi$  (KEM) and  $\Pi'$  are CCA secure, then  $\Pi_{hy}$  is also CCA secure.

### KEM based on ElGamal

1. 
$$Gen(1^n) \rightarrow (pk, sk)$$
  
1.  $\operatorname{Run} \mathscr{G}(1^n)$  to obtain  $(G, g, q)$ .  
2.  $\operatorname{Sample} x \leftarrow Z_q$  and set  $h = g^x$   
3.  $\operatorname{Set} pk = (G, g, q, h)$  and  $sk = x$ .  
2.  $Encap(pk) \rightarrow (c, k)$   
1.  $\operatorname{Parse} pk = (G, g, q, h)$   
2.  $\operatorname{Sample} r \leftarrow Z_q$  and set  $c = g^r$  and  $k = H(h^r)$   
3.  $Decap(sk, c) \rightarrow k$   
1.  $\operatorname{Output} k = H(c^{sk})$ 

KEM security based

### Efficiency

- For short messages: Directly use PKE
- For long messages: Use hybrid encryption
  - This is how things are done in practice

## Is ElGamal Encryption CCA Secure?

- ElGamal Ciphertext  $c_1 = g^r$  and  $c_2 = m \cdot h^r$
- Given this ciphertext construct another ciphertext that encrypts the same message.
- Sample uniform *s*.

• 
$$c_1' = c_1 \cdot g^s$$
 and  $c_2' = c_2 \cdot h^r$ 

# Homomorphic Properties of ElGamal Encryption

- Given two ciphertexts
  - $(c_1, c_2)$  encrypting message m
  - $(c'_1, c'_2)$  encrypting message m'
- Can we obtain an encryption  $m \cdot m'$ ?
- Answer:  $(c_1 \cdot c_1', c_2 \cdot c_2')$  is an encryption of  $m \cdot m'$ .
- Any homomorphic encryption scheme cannot be CCA secure.

## **RSA Encryption**

### Group $Z_N^*$

- Consider the set  $Z_N = \{0, ..., N 1\}$
- This is a group with respect to addition. Is it a group with respect to multiplication?

$$Z_N^* = \{ b \in \{1, \dots N - 1\} \mid \gcd(b, N) = 1 \}$$

- Removes 0 and elements that are not-coprime to N.
- Interested in  $N = p \cdot q$ , where p and q are prime  $\phi(N) = (p-1)(q-1)$

### Factoring Problem

The RSA cryptosystem is not known to be as hard as factoring.

- Multiplication can be done in polynomial time; but factoring a number in general is believed to be hard.
- It's not hard to factor most numbers
  - Half the numbers are even.
  - 1/3 of the numbers are divisible by 3 and so on..
- Numbers obtained as products of two equal length primes are hardest to factor

### The RSA Problem

• Let  $N = p \cdot q$ , where p and q are distinct odd primes

 $Z_N^* = \{ b \in \{1, \dots N - 1\} \mid \gcd(b, N) = 1 \}$ 

- Fix an e such that  $gcd(e, \phi(N)) = 1$ 
  - $x \rightarrow x^e \mod N$  is a permutation of  $Z_N^*$
- If  $ed = 1 \mod \phi(N)$  then:
  - $(x^e)^d = x \mod N$

Can be computed if p and q are known!

### The RSA Problem

- $RSA_{\mathbf{A},\mathcal{G}}(\mathbf{n})$
- 1. Run  $\mathscr{G}(1^n)$  to obtain (N, e, d).
- 2. Pick uniform  $y \in Z_N^*$ .
- 3. A is given (N, e, y)and it outputs x.
- 4. Output 1 if  $x^e = y$ and 0 otherwise

**RSA Problem** is hard relative to  $\mathcal{G}$  if  $\forall$  *PPT*  $A \exists$  *negl* such that:  $\left|\Pr\left[RSA_{A,\mathcal{G}}(n)=1\right]\right| \leq negl(n).$ 

### ``Plain'' RSA Encryption

1. 
$$Gen(1^n) \rightarrow (pk, sk)$$
  
1.  $\operatorname{Run} \mathscr{G}(1^n)$  to obtain  $(N, e, d)$ .  
2.  $\operatorname{Set} pk = (N, e)$  and  $sk = d$ .

2. 
$$Enc(pk, m \in Z_N^*) \to c$$

- 1. Parse pk = (N, e)
- 2. Set  $c = m^e \mod N$
- 3.  $Dec(sk,c) \rightarrow m/\bot$ 1. Output  $c^{sk} \mod N$

### Is this secure?

- CPA Secure?
- This scheme is deterministic and thus not CPA-secure.
- c leaks partial information about m.

Plain RSA should never be used.

### Secure RSA Encryption

1. 
$$Gen(1^n) \rightarrow (pk, sk)$$
  
1.  $\operatorname{Run} \mathscr{G}(1^n)$  to obtain  $(N, e, d)$ .  
2.  $\operatorname{Set} pk = (N, e)$  and  $sk = d$ .  
2.  $Enc(pk, m \in \{0,1\}) \rightarrow c = (c_1, c_2)$   
1.  $\operatorname{Parse} pk = (N, e)$ . Sample a random  $r \in Z_N^*$ .  
2.  $\operatorname{Set} c_1 = r^e \mod N$  and  $c_2 = hc(r) \oplus m$   
3.  $Dec(sk, c) \rightarrow m/\bot$   
1.  $\operatorname{Output} hc(c_1^{sk} \mod N) \oplus c_2 \bigcirc$ 

Interestingly Isb(r) is also hardness concentrate function for the RSA function.

#### Thank You!

