CS171: Cryptography

Lecture 16 – Review Lecture

Sanjam Garg

MACs - Formally

- (Gen, Mac, Vrfy)
- $Gen(1^n)$: Outputs a key k.
- $Mac_k(m)$: Outputs a tag t.
- $Vrfy_k(m, t)$: Outputs 0/1.
- Correctness: $\forall n, k \leftarrow Gen(1^n), \forall m \in \{0,1\}^*$, we have that $Vrfy_k(m, Mac_k(m)) = 1$.
- Default Construction of Vrfy (for deterministic Mac): $Vrfy_k(m, t)$ outputs 1 if and only $Mac_k(m) = t$.

Unforgeability/Security of MAC

 $MacForge_{A,\Pi}(1^n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$.
- 2. Let (m^*, t^*) be the output of $A^{Mac_k(\cdot)}$. Let M be the list of queries A makes.
- 3. Output 1 if $Vrf y_k(m^*, t^*) = 1 \land m^* \notin M$ and 0 otherwise.

 $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under adaptive chosen attack, or is *eu-cma-secure* if \forall PPT *A* it holds that: $\Pr[MacForge_{A,\Pi} = 1] \leq negl(n)$

Practice Problem 1 – MAC Combiner

- Combine two cryptosystems
- Give MAC Schemes $\Pi_1 = (Gen_1, Mac_1, Vrfy_1)$ and $\Pi_2 = (Gen_2, Mac_2, Vrfy_2)$, construct a MAC Scheme $\Pi = (Gen, Mac, Vrfy)$ that is secure as long as at least one of Π_1 and Π_2 is secure.

Construction

- $Gen(1^n)$: Outputs key $k = (k_1, k_2)$ where $k_1 \leftarrow Gen_1(1^n)$ and $k_2 \leftarrow Gen_2(1^n)$.
- $Mac_k(m)$: Outputs a tag $t = (t_1, t_2)$ where where $t_1 \leftarrow Mac_{1_{k_1}}(m)$ and $t_2 \leftarrow Mac_{2_{k_2}}(m)$.
- $Vrfy_k(m,t)$: Output $Vrfy_{1_{k_1}}(m,t_1) \land Vrfy_{2_{k_2}}(m,t_2)$

Proof of Security

• If an attacker A breaks Π then there exists two attackers A_1, A_2 such that A_1 breaks Π_1 and A_2 breaks Π_2 .

Unforgeable Encryption

 $\operatorname{EncForge}_{\mathbf{A},\Pi}(1^n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$.
- 2. Let c^* be the output of $A^{Enc_k(\cdot)}(1^n)$. Let Q be the list of messages A gets ciphertexts for from the oracle.
- 3. Output 1 if $Dec_k(c^*) \notin \{\bot\} \cup Q$ and 0 otherwise.

 $\Pi = (Gen, Enc, Dec) \text{ is}$ unforgeable if $\forall \text{ PPT } \textbf{A} \text{ it holds that:}$ $\Pr[\text{EncForge}_{A,\Pi} = 1] \leq \text{negl}(n)$

Authenticated Encryption

• A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

Hard to come up with legitimate looking

ciphertexts of new messages!

The power of decryption queries doesn't help!

Practice Problem 2 – Unforgeable Encryption Combiner

- Give Unforgeable encryption schemes $\Pi_1 = (Gen_1, Enc_1, Dec_1)$ and $\Pi_2 = (Gen_2, Enc_2, Dec_2)$, is $\Pi = (Gen, Enc, Dec)$ below an unforgeable encryption as long as at least one of Π_1 and Π_2 is secure.
- $Gen(1^n)$: Outputs key $k = (k_1, k_2)$ where $k_1 \leftarrow Gen_1(1^n)$ and $k_2 \leftarrow Gen_2(1^n)$.
- $Enc_k(m)$: Outputs a tag $c = (c_1, c_2)$ where where $c_1 \leftarrow Enc_{1_{k_1}}(r)$ and $c_2 \leftarrow Enc_{2_{k_2}}(m \bigoplus r)$ where $r \leftarrow \{0,1\}^{|m|}$.
- $Dec_k(c)$: ??

Practice Problem 2 – Is this CPA secure?

- Yes!
- Proof: DIY

Practice Problem 2 – Unforgeable Encryption Combiner

- No!
- Adversary A given $c = (c_1, c_2)$ and $c' = (c_1', c_2')$ outputs a new ciphertext

$$c^* = (c_1, c_2')$$

Hash Function Definition

- Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$
 - A collision is distinct x and x' such that H(x) = H(x')
- A hash function (with output length ℓ) is a pair of PPT algorithms (*Gen*, *H*) satisfying the following:
 - $Gen(1^n)$: Outputs s.
 - *H*: On input a key *s* and a string $x \in \{0,1\}^*$ output a string $H^s(x) \in \{0,1\}^{\ell(n)}$ s is public
- If H^s is defined only for inputs $\{0,1\}^{\ell'(n)}$ where $\ell'(n) > \ell(n)$, then (Gen, H) is a fixed-length hash function for inputs of length ℓ' .

Hash Function Security

 $HashColl_{A,\Pi}(n)$

- 1. Sample $s \leftarrow \text{Gen}(1^n)$.
- 2. Let x, x' be the output of $A(1^n, s)$.
- 3. Output 1 if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$ and 0 otherwise.

 $\Pi = (Gen, H) \text{ is}$ collision resistant if $\forall \text{ PPT } A \text{ it holds that:}$ $\Pr[HashColl_{A,\Pi}(n) = 1] \leq \text{ negl(n)}$

No secrets!

Practice Problem 3 – Hash Function Combiner

- Given $\Pi_1 = (Gen_1, H_1)$ and $\Pi_2 = (Gen_2, H_2)$, is $\Pi = (Gen, H)$ a CRHF as long as at least one of Π_1 and Π_2 is a secure CRHF.
- $Gen(1^n)$: Outputs key $s = (s_1, s_2)$ where $s_1 \leftarrow Gen_1(1^n)$ and $s_2 \leftarrow Gen_2(1^n)$.
- $H_s(m)$: Outputs $h = (h_1, h_2)$ where where $h_1 \leftarrow H_{1_{S_1}}(m)$ and $h_2 \leftarrow H_{2_{S_2}}(m)$.

Practice Problem 3 – Hash Function Combiner

- If an attacker A breaks Π then there exists two attackers A_1, A_2 such that A_1 breaks Π_1 and A_2 breaks Π_2 .
- Adversary A gives H(m) = H(m') outputs
- Observe $H(m) = H_1(m), H_2(m)$
- Thus, $H_1(m), H_2(m) = H_1(m'), H_2(m')$
- (m, m') is a collision for both Π_1 and Π_2

Merkle Hash Construction

• Construct MH: $\{0,1\}^{2^{\ell}n} \rightarrow \{0,1\}^n$ from a hash function H: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$

FIGURE 5.5: A Merkle tree.

Proof

- If MH is not CRHF then H is not a CRHF.
- Given a collision MH(M) = MH(M') such that $M \neq M'$
- We can find a collision for *h* from the two trees.

Merkle Hash Construction

- Alice/Prover and Bob/Verifier have access to Merkle Hash h
- Alice wants to prove to Bob that the i-th input value for hashing to $h = MH(..., m_i, ...)$ is m_i
- Alice can send $m_1, \dots m_\ell$ to Bob and it can verify that the hash was computed correctly and recover m_i
- Can Alice send something smaller?

Define: One-Way Functions

A function f: {0,1}* → {0,1}* that is easy to compute but hard to invert

One-Way Functions: Formally

- A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is a one-way function if:
- (easy to compute) There exists a polynomial-time algorithm M_f computing f; i.e., for all x, $M_f(x) = f(x)$.
- (hard to invert) For all PPT A, there is a negligible function negl such that

 $\Pr_{x \leftarrow \{0,1\}^n} \left[A\left(1^n, f(x)\right) \in f^{-1}(f(x)) \right] \le negl(n)$

Practice Problem 4 – OWF Combiner

• If f || g is a OWF as long as at least one of f and g is a OWF

$$f||g(\mathbf{x},\mathbf{y}) = f(\mathbf{x})||g(\mathbf{y})$$

• Proof:

Implication Graph

Public-Key Encryption

- A public-key encryption scheme is a triple of PPT algorithms (Gen, Enc, Dec) such that:
- 1. $Gen(1^n) \rightarrow (pk, sk)$
- 2. $Enc(pk,m) \rightarrow c$
- 3. $Dec(sk, c) \rightarrow m/\bot$
- Correctness: For all (pk, sk) output by Gen(1ⁿ), we have that ∀ (legal) m, Dec (sk, Enc(pk,m)) = m
- Security: EAV-security, CPA-security?

EAV Security

 $\operatorname{PubK}_{A,\Pi}^{\operatorname{eav}}(n)$

- 1. $(pk, sk) \leftarrow G(1^n)$ and give pk to A.
- 2. A outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc(pk, m_b)$
- 4. c is given to A and it outputs b'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable in the presence of an eavesdropper, or is *EAV*secure if \forall PPT *A* it holds that:

 $\Pr[\operatorname{PubK}_{A,\Pi}^{eav} = 1] \leq \frac{1}{2} + \operatorname{negl}(n)$

CCA Security ••• • <

Much harder in the PKE setting.

 $\operatorname{PubK}_{A,\Pi}^{\operatorname{CCA}}(n)$

- 1. $(pk, sk) \leftarrow G(1^n)$ and give pk to A.
- 2. $A^{Dec(sk,\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc(pk, m_b)$
- 4. c is given to $A^{Dec(sk,\cdot)}$ and it outputs b' (query c not allowed)
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable in the presence of a CCA attacker, or is *CCA-secure* if

∀ PPT *A* it holds that: $Pr[PubK_{A,\Pi}^{cca} = 1] \le \frac{1}{2}$ + negl(n)

ElGamal Encryption Correctness? 1. $Gen(1^n) \rightarrow (pk, sk)$ 0 Run $\mathcal{G}(1^n)$ to obtain (G, g, q). 1. 2. Sample $x \leftarrow Z_q$ and set $h = g^x$ Set pk = (G, g, q, h) and sk = x. 3. 2. $Enc(pk, m \in G) \rightarrow c = (c_1, c_2)$ 1. Parse pk = (G, g, q, h)2. Sample $r \leftarrow Z_q$ and set $c_1 = g^r$ and $c_2 = m \cdot h^r$ 3. $Dec(sk,c) \rightarrow m/\bot$ 1. Parse $c = (c_1, c_2)$ Security based on 2. Output $\frac{c_2}{c^r}$ DDH!

Thank You!

