CS171: Cryptography

Lecture 18

Sanjam Garg

Identity-Based Encryption (IBE) [Shamir84]

Identity of the recipient used as the public key

Identity-Based Encryption (IBE) [Shamir84]

Four Algorithms: (S, K, E, D)

 $S(1^{\lambda}) \rightarrow (pp, msk)$ pp are public parameters secret-key pp are public parameters

 $K(msk, ID) \rightarrow sk_{ID}$

 $E(pp, ID, m) \rightarrow c$

 $D(sk_{ID}, c) \rightarrow m$

*sk*_{*ID*} secret key for *ID*

encrypt using pp and ID

decrypt c using sk_{ID}

Security of IBE [BF01]

- Attacker has access to *any* number of keys for identities of his choice
- Attacker cannot break security for any *other* identity

Security of IBE [BF01]

Bilinear Groups

- High level: Groups where CDH is hard but DDH is easy
- Consider group G of prime order q and generator g
- Comes with a Bilinear map e
 - $e: G \times G \rightarrow G_T$
 - If g is a generator of G then e(g, g) is a generator of G_T
 - $\forall a, b \in Z_q^*, e(g^a, g^b) = e(g, g)^{ab}$
- DDH is easy: how?
 - A, B, C is a DDH tuple if and only if e(A, B) = e(g, C)
- CDH is hard: how?
 - Cannot prove! Assume as no attacks are known.

Decisional Bilinear Diffie-Hellman Assumption

 $\mathrm{DBDH}_{\mathbf{A}, \mathscr{G}}(\mathbf{n})$

- 1. Run $\mathcal{G}(1^n)$ to obtain (G, G_T, g, q, e) .
- $\begin{array}{ll} \textit{2.} & a,b,c,r \leftarrow Z_q^* \text{ and } \beta \leftarrow \\ \{0,1\}. \end{array}$
- 3. A is given (G, G_T, g, q) and $(g^a, g^b, g^c, e(g, g)^{abc+\beta r})$ outputs β' .
- 4. Output 1 if $\beta = \beta'$ and 0 otherwise

DBDH is hard relative to \mathscr{G} if $\forall PPT A \exists negl \text{ such that:}$ $|\Pr[DBDH_{A,\mathscr{G}}(n) = 1] - 1/2| \leq negl(n).$

Three party Non-Interactive Key-Exchange

IBE Construction

Let $H : \{0,1\}^* \to G$ be a hash function

- $S(1^n)$: Output $mpk = g^a$ and msk = a
- K(msk, id): Output $sk_{id} = H(id)^a$
- $E(mpk, id, m \in G)$: Sample $r \leftarrow Z_q^*$ and output $c_0 = g^r, c_1 = m \cdot e(mpk, H(id))^r$
- $D(sk_{id}, (c_0, c_1))$: Output $\frac{c_1}{e(c_0, sk_{id})}$
 - Correctness: Follows by a simple check
 - Security: Given g^a , g^r and H(id), $e(g, H(id))^{ar}$ is indistinguishable from uniform.

Digital Signatures from IBE

IBE => Digital Signatures

- $Gen(1^n)$: Sample $(mpk, msk) \leftarrow S(1^n)$ and output pk = mpk, sk = msk
- Sign(sk, m): Output $\sigma \leftarrow K(msk, m)$
- $Vrfy(pk, m, \sigma)$: Output 1 if and only if for a random $h \leftarrow G$, we have that $D(\sigma, E(mpk, m, h)) = h$

Proof

• Attackers ability to produce a forgery on a message m^* directly translates to breaking the security of the IBE on identity $id^* = m^*$.

CCA Security from IBE

CCA Security ••• • <

Much harder in the PKE setting.

 $\operatorname{PubK}_{A,\Pi}^{\operatorname{CCA}}(n)$

- 1. $(pk, sk) \leftarrow G(1^n)$ and give pk to A.
- 2. $A^{Dec(sk,\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc(pk, m_b)$
- 4. c is given to $A^{Dec(sk,\cdot)}$ and it outputs b' (query c not allowed)
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable in the presence of a CCA attacker, or is *CCA-secure* if

∀ PPT *A* it holds that: $Pr[PubK_{A,\Pi}^{cca} = 1] \le \frac{1}{2}$ + negl(n)

CCA Security from IBE

IBE => CCA1 Secure PKE

- $Gen(1^n)$: Sample $(mpk, msk) \leftarrow S(1^n)$ and output pk = mpk, sk = msk
- *Enc*(*pk*, *m*): Sample a random identity *id*. Output ciphertext as (*id*, E(pk, id, m))
- Dec(sk,(id,c)): Output D(K(sk,id),c)

Proof

What is the problem in getting CCA2?

 The adversary can generate ciphertexts for identity *id** that the IBE adversary (or reduction) will not be able to answer

How can we fix this?

- Two possibilities:
 - Develop a method to enable decryption of such new ciphers.
 - Prevent CCA2 attacker for asking such decryption queries.
- How can we prevent the attacker for asking such queries?

Replace identity with verification key of a signature scheme

IBE => CCA2 Secure PKE

Secure PKE Digital Signature scheme

Strongly

Unforgeable

- $Gen(1^n)$: Sample $(mpk, msk) \leftarrow S(1^n)$ and output pk = mpk, sk = msk
- Enc(pk, m): Sample $(pk_{sig}, sk_{sig}) \leftarrow Gen_{sig}(1^n)$.
 - 1. Set $id = pk_{sig}$
 - 2. $c \leftarrow E(pk, id, m)$
 - 3. $\sigma \leftarrow Sign(sk_{sig}, c)$
 - 4. Output ciphertext as (id, c, σ)
- Dec(sk, (id, c)): Output D(K(sk, id), c) if $Ver(pk_{sig} = id, c, \sigma) = 1$ and error \bot otherwise.

CCA2 secure PKE

One-time security for the signature scheme suffices.

The ciphertext $c_{new} = (id^*, c', \sigma')$ is such that $(c', \sigma') \neq (c^*, \sigma^*)$ and it needs to be decrypted only if $Vrfy(id^*, c', \sigma') = 1$. Specifically, IBE adversary can safely return \perp if this test is the signature verification fails. However, if the signature verification success then (c', σ') is actually a forgery for the underlying signature scheme.

Thank You!

