
CS171: Cryptography
Lecture 19

Sanjam Garg

1 / 13

Commitment Schemes
▶ Bind to a secret value that cannot be later explained with an alternate value.

Sender Receiver

srs, x srs
Commit c = Com(srs, x; r)

Open x, r

Receiver checks
c ?
= Com(srs, x; r).

shared reference
string

▶ Correctness: A sender should be able to convince an honest receiver of the correct opening
with overwhelming probability. (Easy to see)

▶ Binding: No PPT cheating sender can find two openings for the same commitment. That
is, ∀ PPT A we have that
Pr[(x, r, x′, r′)← A(1λ, srs) such that x ̸= x′ and Com(srs, x, r) = Com(srs, x′, r′)] = neg(λ)

▶ Hiding: The commitment doesn’t leak any information about the committed value x.
That is, ∀ PPT A, x, x′ we have that∣∣Pr[A(1λ, srs,Com(srs, x; r)) = 1]− Pr[A(1λ, srs,Com(srs, x′; r′)) = 1]

∣∣ ≤ 1
2 + neg(λ)

2 / 13

Commitment Scheme From Hardness Concentration

Sender Receiver

x ∈ {0, 1}

f : {0, 1}n → {0, 1}n be a one-way permutation

r, s← {0, 1}n

(c1, c2, c3) = (f(r), s, ⟨r, s⟩ ⊕ x)

Open x, r

Receiver checks
c1

?
= f(r) and

c3
?
= ⟨r, c2⟩ ⊕ x).

▶ Binding: Because f is a permutation, given c there is a unique value of r, x such that
c1=f(r) and c3=⟨r, c2⟩ ⊕ x).

▶ Hiding: Follows from the hardness concentration property.

3 / 13

Can we use any encryption algorithm to get a commitment scheme?
▶ Given Π = (Gen,Enc,Dec) let sender execute Com(x; r) as follows. Use randomness r to

execute Gen and then encrypt x using Enc and the obtained key k.
▶ No!
▶ While this commitment offers hiding, it doesn’t give binding.
▶ Shouldn’t binding come from the correctness of encryption?
▶ The encrypter may not choose their random coins honestly.

4 / 13

Pederson Commitment Schemes

Sender Receiver

srs,x srs

srs = (G, g, q, h)

r← Zq

Commit c = gx · hr

Open x, r

Receiver checks
c ?
= gx · hr.

▶ Binding: Given x, x′, r, r′ such that gx · hr = c = gx′ · hr′ we can compute dlogg(h).
▶ Hiding: For every c = gxhr and x′ there exists r′ = r + x′−x

dlogg(h) .

5 / 13

Commitment to a vector x = (x0, . . . xn−1)
Send ci = Com(xi; ri) for each i.

Can we do it succinctly?

6 / 13

Merkle Commitment Schemes

Sender Receiver

x0, . . . xn−1

r0 . . . rn−1 ← Zq

c = H (gx0 · hr0 . . . gxn−1 · hrn−1)

Open x0, r0 . . . xn−1, rn−1

Receiver checks c ?
=

H (gx0 · hr0 . . . gxn−1 · hrn−1).

▶ Hashing in More Detail (n = 2ℓ): For every i ∈ {0, n− 1}, c0
i = gxihri . For all

j ∈ {0, . . . ℓ− 1}, i ∈ {0 . . . 2j − 1} set cj+1
i/2 = H(cj

i||c
j
i+1). Finally, c = cℓ0.

▶ Binding: An attacker that outputs distinct x0, r0, . . . xn−1, rn−1 and x′0, r′0, . . . x′n, r′n such
that ∃i with xi ̸= x′i and the receiver checks pass on both can be used to break either (i)
CRHF, or (ii) compute dlogg(h).

▶ Hiding: For every c0
i = gxihri that is hashed and x′i there exists r′i = ri +

x′i −xi
dlogg(h) .

▶ Partial Opening (Location k): Opening c0
k, xk, rk and ∀j ∈ {0, ℓ} send cj

k
2j

and cj
k
2j +1.

7 / 13

Commitment to a Polynomial f(x) of degree n− 1
Succinctly

8 / 13

Polynomial Interpolation
Problem: Given a0...an−1 (evaluation representation) find the degree-n− 1 polynomial
f(x) = b0 + b1x + ...bn−1xn−1 (coefficient representation), i.e. b0, b1...bn−1, such that for
all i ∈ H = {0, ...n− 1} we have f(i) = ai.

▶ Let Li(x) be the degree-n− 1 polynomial such that Li(i) = 1 and for all j ∈ H\{i} Li(j) = 0

Li(x) =
∏

j∈H\{i}(x− j)∏
j∈H\{i}(i− j) .

▶ Next, we have
f(x) =

∑
i∈H

ai · Li(x)

▶ Lis can be cached for efficiency. DIY: Prove that the constructed polynomials are correct
and unique.

9 / 13

KZG Polynomial Commitment/Pairing Curve BLS12-381
▶ Gives groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ and GT (of the same prime order p) along with a

bilinear pairing operation e.
▶ For every α, β ∈ Z∗

p, we have that e(gα1 , g
β
2) = e(g1, g2)αβ .

▶ Setup: srs generation that supports committing to degree d− 1 polynomials:
▶ Sample τ ← Z∗

p .
▶ srs = (h0 = g1, h1 = gτ

1 , gτ2
1 ,hd = gτd−1

1 , g2, h′ = gτ
2)

▶ Commitment: Given srs and a polynomial f(x) = c0 + c1x + ...cd−1xd−1 of degree d− 1,
we can compute Com(f) as:

F = Com(f) = gf(τ)
1 =

d−1∏
i=0

hci
i

▶ Opening: Show that f(z) = s. In this case, g(x) = f(x)− s is such that g(z) = 0. Or,
x− z divides f(x)− s.

▶ Sender computes T(x) = f(x)−f(z)
x−z and sends W = Com(T).

▶ Receiver Accepts if: e
(

F
gs

1
, g2
)
= e

(
W, h′

gz
2

)
.

10 / 13

Optimizing Opening by Batching — Warmup
Often we want to check multiple pairing equations:

e(F0, g2) = e(W0, h2)

e(F1, g2) = e(W1, h2)

e(F2, g2) = e(W2, h2)

A faster way to check? The receiver samples a random γ and checks:

e
(2∏

i=0
Fγ i

i , g2

)
= e

(2∏
i=0

Wγ i

i , h2

)

Need only 2 pairings instead of 6.

11 / 13

Optimizing Opening by Batching
▶ Problem: Consider the setting where sender commits to polynomials f1...ft as F1...Ft and

wants to show that for all i we have that fi(z) = si.
▶ Opening: Receiver sends random γ. Sender computes T(x) =

∑t
i=1 γ

i−1 · fi(x)−fi(z)
x−z and

sends W = Com(T).

▶ Receiver Accepts if: e
(∏t

i=1

(
Fi
gsi

1

)γ i−1

, g2

)
= e

(
W, h′

gz
2

)
. (only two pairings)

12 / 13

KZG Commitment is Homomorphic
▶ Given commitments c1, c2 to polynomials f1(x) and f2(x) find a commitment to the

polynomial g(x) = f1(x) + f2(x)?
▶ Output Commitment as c1 · c2.

13 / 13

	Introduction

