CS171: Cryptography Lecture 19

Sanjam Garg

Commitment Schemes

Bind to a secret value that cannot be later explained with an alternate value.

- Correctness: A sender should be able to convince an honest receiver of the correct opening with overwhelming probability. (Easy to see)
- ▶ Binding: No PPT cheating sender can find two openings for the same commitment. That is, ∀ PPT A we have that

 $\Pr[(x, r, x', r') \leftarrow \mathcal{A}(1^{\lambda}, srs) \text{ such that } x \neq x' \text{ and } \operatorname{Com}(srs, x, r) = \operatorname{Com}(srs, x', r')] = \operatorname{neg}(\lambda)$

► Hiding: The commitment doesn't leak any information about the committed value x. That is, ∀ PPT A, x, x' we have that

$$\left|\Pr[\mathcal{A}(1^{\lambda}, \mathsf{srs}, \mathsf{Com}(\mathsf{srs}, x; r)) = 1] - \Pr[\mathcal{A}(1^{\lambda}, \mathsf{srs}, \mathsf{Com}(\mathsf{srs}, x'; r')) = 1]\right| \leq \frac{1}{2} + \mathsf{neg}(\lambda)$$

Commitment Scheme From Hardness Concentration

▶ Binding: Because *f* is a permutation, given *c* there is a unique value of *r*, *x* such that $c_1=f(r)$ and $c_3=\langle r, c_2 \rangle \oplus x$).

Hiding: Follows from the hardness concentration property.

Can we use any encryption algorithm to get a commitment scheme?

- Given $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ let sender execute Com(x; r) as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.
- No!
- While this commitment offers hiding, it doesn't give binding.
- Shouldn't binding come from the correctness of encryption?
- ► The encrypter may not choose their random coins honestly.

Pederson Commitment Schemes

srs = (G, g, q, h)

b Binding: Given x, x', r, r' such that $g^x \cdot h^r = c = g^{x'} \cdot h^{r'}$ we can compute $dlog_g(h)$.

▶ Hiding: For every $c = g^{x}h^{r}$ and x' there exists $r' = r + \frac{x'-x}{d\log_{a}(h)}$.

Commitment to a vector $\mathbf{x} = (\mathbf{x}_0, \dots, \mathbf{x}_{n-1})$ Send $c_i = \text{Com}(x_i; r_i)$ for each *i*. Can we do it succinctly?

Merkle Commitment Schemes

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}, c_i^0 = g^{x_i} h^{r_i}$. For all $j \in \{0, ..., \ell 1\}, i \in \{0, ..., 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j || c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- Binding: An attacker that outputs distinct x₀, r₀, ... x_{n-1}, r_{n-1} and x'₀, r'₀, ... x'_n, r'_n such that ∃i with x_i ≠ x'_i and the receiver checks pass on both can be used to break either (i) CRHF, or (ii) compute dlog_g(h).

▶ Hiding: For every $c_i^0 = g^{x_i} h^{r_i}$ that is hashed and x'_i there exists $r'_i = r_i + \frac{x'_i - x_i}{dlog_r(h)}$.

▶ Partial Opening (Location k): Opening c_k^0, x_k, r_k and $\forall j \in \{0, \ell\}$ send c_{k}^j and c_{k}^j and c_{k}^j .

Commitment to a Polynomial f(x) of degree n-1Succinctly

Polynomial Interpolation

Problem: Given $a_0...a_{n-1}$ (evaluation representation) find the degree-n-1 polynomial $f(x) = b_0 + b_1x + ...b_{n-1}x^{n-1}$ (coefficient representation), i.e. $b_0, b_1...b_{n-1}$, such that for all $i \in H = \{0, ..., n-1\}$ we have $f(i) = a_i$.

▶ Let $L_i(x)$ be the degree-n-1 polynomial such that $L_i(i) = 1$ and for all $j \in H \setminus \{i\}$ $L_i(j) = 0$

$$L_i(x) = \frac{\prod_{j \in H \setminus \{i\}} (x-j)}{\prod_{j \in H \setminus \{i\}} (i-j)}.$$

Next, we have

$$f(x) = \sum_{i \in H} a_i \cdot L_i(x)$$

L_is can be cached for efficiency. DIY: Prove that the constructed polynomials are correct and unique.

KZG Polynomial Commitment/Pairing Curve BLS12-381

- ► Gives groups G₁ = ⟨g₁⟩, G₂ = ⟨g₂⟩ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- ▶ For every $\alpha, \beta \in \mathbb{Z}_p^*$, we have that $e(g_1^{\alpha}, g_2^{\beta}) = e(g_1, g_2)^{\alpha\beta}$.
- **Setup:** srs generation that supports committing to degree d-1 polynomials:

Sample
$$\tau \leftarrow \mathbb{Z}_p^*$$
.

• srs =
$$(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, ..., h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$$

Commitment: Given srs and a polynomial $f(x) = c_0 + c_1x + ... c_{d-1}x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \text{Com}(f) = g_1^{f(\tau)} = \prod_{i=0}^{d-1} h_i^c$$

• **Opening:** Show that f(z) = s. In this case, g(x) = f(x) - s is such that g(z) = 0. Or, x - z divides f(x) - s.

• Sender computes $T(x) = \frac{f(x) - f(z)}{x - z}$ and sends W = Com(T).

• Receiver Accepts if: $e\left(\frac{F}{g_1^s}, g_2\right) = e\left(W, \frac{h'}{g_2^s}\right)$.

Optimizing Opening by Batching — Warmup

Often we want to check multiple pairing equations:

$$e(F_0, g_2) = e(W_0, h_2)$$
$$e(F_1, g_2) = e(W_1, h_2)$$
$$e(F_2, g_2) = e(W_2, h_2)$$

A faster way to check? The receiver samples a random γ and checks:

$$e\left(\prod_{i=0}^{2} F_{i}^{\gamma^{i}}, g_{2}\right) = e\left(\prod_{i=0}^{2} W_{i}^{\gamma^{i}}, h_{2}\right)$$

Need only 2 pairings instead of 6.

Optimizing Opening by Batching

- **Problem:** Consider the setting where sender commits to polynomials $f_1...f_t$ as $F_1...F_t$ and wants to show that for all *i* we have that $f_i(z) = s_i$.
- **Opening:** Receiver sends random γ . Sender computes $T(x) = \sum_{i=1}^{t} \gamma^{i-1} \cdot \frac{f_i(x) f_i(z)}{x-z}$ and sends W = Com(T).

• Receiver Accepts if:
$$e\left(\prod_{i=1}^{t} \left(\frac{F_{i}}{g_{1}^{s_{i}}}\right)^{\gamma^{i-1}}, g_{2}\right) = e\left(W, \frac{h'}{g_{2}^{z}}\right)$$
. (only two pairings)

KZG Commitment is Homomorphic

- Given commitments c_1, c_2 to polynomials $f_1(x)$ and $f_2(x)$ find a commitment to the polynomial $g(x) = f_1(x) + f_2(x)$?
- Output Commitment as $c_1 \cdot c_2$.