CS171: Cryptography

Lecture 19

Sanjam Garg

Commitment Schemes

- Bind to a secret value that cannot be later explained with an alternate value.

- Correctness: A sender should be able to convince an honest receiver of the correct opening with overwhelming probability. (Easy to see)
- Binding: No PPT cheating sender can find two openings for the same commitment. That is, \forall PPT \mathcal{A} we have that

$$
\left.\operatorname{Pr}\left[\left(x, r, x^{\prime}, r^{\prime}\right) \leftarrow \mathcal{A}\left(1^{\lambda}, \text { srs }\right) \text { such that } x \neq x^{\prime} \text { and Com(srs, } x, r\right)=\operatorname{Com}\left(\text { srs }, x^{\prime}, r^{\prime}\right)\right]=\operatorname{neg}(\lambda)
$$

- Hiding: The commitment doesn't leak any information about the committed value x. That is, $\forall \operatorname{PPT} \mathcal{A}, x, x^{\prime}$ we have that

$$
\mid \operatorname{Pr}\left[\mathcal{A}\left(1^{\lambda}, \text { srs, } \operatorname{Com}(\operatorname{srs}, x ; r)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(1^{\lambda}, \text { srs, } \operatorname{Com}\left(\text { srs }, x^{\prime} ; r^{\prime}\right)\right)=1\right] \left\lvert\, \leq \frac{1}{2}+\operatorname{neg}(\lambda)\right.
$$

Commitment Scheme From Hardness Concentration

- Binding: Because f is a permutation, given c there is a unique value of r, x such that $c_{1}=f(r)$ and $\left.c_{3}=\left\langle r, c_{2}\right\rangle \oplus x\right)$.
- Hiding: Follows from the hardness concentration property.

Can we use any encryption algorithm to get a commitment scheme?

- Given $\Pi=($ Gen, Enc, Dec) let sender execute Com $(x ; r)$ as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.
- No!
- While this commitment offers hiding, it doesn't give binding.
- Shouldn't binding come from the correctness of encryption?
- The encrypter may not choose their random coins honestly.

Pederson Commitment Schemes

$$
\mathrm{srs}=(G, g, q, h)
$$

- Binding: Given $x, x^{\prime}, r, r^{\prime}$ such that $g^{x} \cdot h^{r}=c=g^{x^{\prime}} \cdot h^{\prime}$ we can compute $d \log _{g}(h)$.
- Hiding: For every $c=g^{x} h^{r}$ and x^{\prime} there exists $r^{\prime}=r+\frac{x^{\prime}-x}{d \log _{g}(h)}$.

Commitment to a vector $\mathbf{x}=\left(\mathbf{x}_{0}, \ldots \mathbf{x}_{\mathbf{n}-1}\right)$
Send $c_{i}=\operatorname{Com}\left(x_{i} ; r_{i}\right)$ for each i.
Can we do it succinctly?

Merkle Commitment Schemes

$$
r_{0} \ldots r_{n-1} \leftarrow \mathbb{Z}_{q}
$$

- Hashing in More Detail $\left(n=2^{\ell}\right)$: For every $i \in\{0, n-1\}, c_{i}^{0}=g^{x_{i}} h^{r_{i}}$. For all $j \in\{0, \ldots \ell-1\}, i \in\left\{0 \ldots 2^{j}-1\right\}$ set $c_{i / 2}^{j+1}=H\left(c_{i}^{j} \| c_{i+1}^{j}\right)$. Finally, $c=c_{0}^{\ell}$.
- Binding: An attacker that outputs distinct $x_{0}, r_{0}, \ldots x_{n-1}, r_{n-1}$ and $x_{0}^{\prime}, r_{0}^{\prime}, \ldots x_{n}^{\prime}, r_{n}^{\prime}$ such that $\exists i$ with $x_{i} \neq x_{i}^{\prime}$ and the receiver checks pass on both can be used to break either (i) CRHF, or (ii) compute $\operatorname{dlog}_{g}(h)$.
- Hiding: For every $c_{i}^{0}=g^{x_{i}} h^{r_{i}}$ that is hashed and x_{i}^{\prime} there exists $r_{i}^{\prime}=r_{i}+\frac{x_{i}^{\prime}-x_{i}}{d \log _{g}(h)}$.
- Partial Opening (Location k): Opening c_{k}^{0}, x_{k}, r_{k} and $\forall j \in\{0, \ell\}$ send $\delta_{\frac{k}{2}}^{j}$ and $\delta_{\frac{k}{2}+1}^{j}$.

Commitment to a Polynomial $f(x)$ of degree $n-1$ Succinctly

Polynomial Interpolation

Problem: Given $a_{0} \ldots a_{n-1}$ (evaluation representation) find the degree- $n-1$ polynomial $f(x)=b_{0}+b_{1} x+\ldots b_{n-1} x^{n-1}$ (coefficient representation), i.e. $b_{0}, b_{1} \ldots b_{n-1}$, such that for all $i \in H=\{0, \ldots n-1\}$ we have $f(i)=a_{i}$.

- Let $L_{i}(x)$ be the degree- $n-1$ polynomial such that $L_{i}(i)=1$ and for all $\left.j \in H \backslash i\right\} L_{i}(j)=0$

$$
L_{i}(x)=\frac{\prod_{j \in H \backslash\{i\}}(x-j)}{\prod_{j \in H \backslash\{i\}}(i-j)}
$$

- Next, we have

$$
f(x)=\sum_{i \in H} a_{i} \cdot L_{i}(x)
$$

- $L_{i s}$ can be cached for efficiency. DIY: Prove that the constructed polynomials are correct and unique.

KZG Polynomial Commitment/Pairing Curve BLS12-381

- Gives groups $G_{1}=\left\langle g_{1}\right\rangle, G_{2}=\left\langle g_{2}\right\rangle$ and G_{T} (of the same prime order p) along with a bilinear pairing operation e.
- For every $\alpha, \beta \in \mathbb{Z}_{p}^{*}$, we have that $e\left(g_{1}^{\alpha}, g_{2}^{\beta}\right)=e\left(g_{1}, g_{2}\right)^{\alpha \beta}$.
- Setup: srs generation that supports committing to degree $d-1$ polynomials:
- Sample $\tau \leftarrow \mathbb{Z}_{p}^{*}$.
- $\operatorname{srs}=\left(h_{0}=g_{1}, h_{1}=g_{1}^{\tau}, g_{1}^{\tau^{2}}, \ldots . . h_{d}=g_{1}^{d-1}, g_{2}, h^{\prime}=g_{2}^{\tau}\right)$
- Commitment: Given srs and a polynomial $f(x)=c_{0}+c_{1} x+\ldots c_{d-1} x^{d-1}$ of degree $d-1$, we can compute $\operatorname{Com}(f)$ as:

$$
F=\operatorname{Com}(f)=g_{1}^{f(\tau)}=\prod_{i=0}^{d-1} h_{i}^{c_{i}}
$$

- Opening: Show that $f(z)=s$. In this case, $g(x)=f(x)-s$ is such that $g(z)=0$. Or, $x-z$ divides $f(x)-s$.
- Sender computes $T(x)=\frac{f(x)-f(z)}{x-z}$ and sends $W=\operatorname{Com}(T)$.
- Receiver Accepts if: $e\left(\frac{F}{g_{1}^{s}}, g_{2}\right)=e\left(W, \frac{h^{\prime}}{g_{2}^{2}}\right)$.

Optimizing Opening by Batching - Warmup

Often we want to check multiple pairing equations:

$$
\begin{aligned}
& e\left(F_{0}, g_{2}\right)=e\left(W_{0}, h_{2}\right) \\
& e\left(F_{1}, g_{2}\right)=e\left(W_{1}, h_{2}\right) \\
& e\left(F_{2}, g_{2}\right)=e\left(W_{2}, h_{2}\right)
\end{aligned}
$$

A faster way to check? The receiver samples a random γ and checks:

$$
e\left(\prod_{i=0}^{2} F_{i}^{\gamma^{i}}, g_{2}\right)=e\left(\prod_{i=0}^{2} W_{i}^{\gamma^{i}}, h_{2}\right)
$$

Need only 2 pairings instead of 6 .

Optimizing Opening by Batching

- Problem: Consider the setting where sender commits to polynomials $f_{1} \ldots f_{t}$ as $F_{1} \ldots F_{t}$ and wants to show that for all i we have that $f_{i}(z)=s_{i}$.
- Opening: Receiver sends random γ. Sender computes $T(x)=\sum_{i=1}^{t} \gamma^{i-1} \cdot \frac{f_{i}(x)-f_{i}(z)}{x-z}$ and sends $W=\operatorname{Com}(T)$.
- Receiver Accepts if: $e\left(\prod_{i=1}^{t}\left(\frac{F_{i}}{g_{1}^{i_{i}}}\right)^{\gamma^{i-1}}, g_{2}\right)=e\left(W, \frac{h^{\prime}}{g_{2}^{2}}\right)$. (only two pairings)

KZG Commitment is Homomorphic

- Given commitments c_{1}, c_{2} to polynomials $f_{1}(x)$ and $f_{2}(x)$ find a commitment to the polynomial $g(x)=f_{1}(x)+f_{2}(x)$?
- Output Commitment as $c_{1} \cdot c_{2}$.

