CS171: Cryptography

Lecture 2

Sanjam Garg

Recap from previous lecture

- Kerckhoff's principle (Security shouldn't rely on secrecy of the cipher)
- Any secure encryption scheme must have a sufficiently large key space
- Security must hold independent of the plaintext distribution
- Ad hoc fixes are likely to break

Cryptography has developed from an art to a science.

Design Principles

Rigorous and precise definitions

Precise assumptions

Importance of Definitions

Assumptions

- Unconditional security, howsoever desirable, is not always achievable
 - We need $P \neq NP$, and in fact more!
- Assumption should be clearly stated
 - Can validate/invalidate them
 - Compare schemes based on different assumptions

Very strong guarantee!

Limitation: Definition may not capture the real-world attack space!

A construction satisfies the considered security definition under the specified assumptions

Limitation: Implementation might be buggy!

Limitation: Assumption might be invalid!

Crypto remains a bit of an art!

Yet, definitions and security proofs are immensely valuable (reduce the attack space).

Perfect But, not assumptions for now. Defining Secure Encryption

Private-key Encryption (syntax)

- A private-key encryption scheme is defined by a message space *M*, a key space *K*, and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): outputs $k \in \mathcal{K}$
 - Enc (encryption algorithm): takes key k and message m∈ M as input; outputs ciphertext c

 $c \leftarrow Enc_k(m)$

 Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m or "error" m := Dec_k(c) ° ° °

k must be kept secret

Correctness: For all $m \in \mathcal{M}$ and k output by Gen, Dec_k(Enc_k(m)) = m

Is it enough to keep your key secret?

Is it enough if the attacker cannot recover the entire message?

Is it enough if every character/bit in the message is hidden?

Can we require that the attacker doesn't learns anything about the message?

The right definition

Regardless of any information an attacker already has, a ciphertext should leak no *additional* information about the plaintext.

No assumptions!

Perfect Security: Formally

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

Notation

variable that takes on (discrete) values with certain probabilities

- Given $\mathcal K$ and (Gen, Enc, Dec)
 - K be a random variable defloting the output of Gen()
 Pr[K = k] =
 Pr[Gen() outputs k]
- M be a random variable denoting the value of the message (M ranges over \mathcal{M})
 - If $\Pr[M = m] > 0$ then m must have been in \mathcal{M}
 - Application specific, example:

Pr[M = "Attack!"] = .6Pr[M = "Retreat"] = .4

M and K are independent!

C be a random variable denoting the value of the ciphertext Pr[C = c] = Pr[Enc_K(M) = c] (Randomness of Enc as well)

Shift Cipher: Example 1

- $k \in \{0, ..., 25\}, \Pr[K = k] = ?$ 1/26
- Pr[M = 'a'] = 0.6, Pr[M = 'b'] = 0.4
- What is $\Pr[C = 'z']$? = $\Pr[Enc_K (M) = 'z']$ =.6 × $\Pr[Enc_K ('a') = 'z'] + .4 \times \Pr[Enc_K ('b') = 'z']$ =.6 × $\frac{1}{26}$ + .4 × $\frac{1}{26}$ = $\frac{1}{26}$

Shift Cipher: Example 2

- Pr[M = 'aa'] = 0.6, Pr[M = 'ab'] = 0.4
- C = 'zz'
- Can you guess what m is?

Shift cipher is insecure even for messages of length two.

The right definition: Formally

Informal: Regardless of any information an attacker already has, a ciphertext should leak no additional information about the plaintext.

Definition 1: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is *perfectly secret* if for every probability distribution over \mathcal{M} , every message $m \in$ \mathcal{M} , and every ciphertext c for which $\Pr[\mathcal{C}] = c] > 0$: $\Pr[\mathcal{M} = m \mid \mathcal{C} = c] = \Pr[\mathcal{M} = m]$

Example

Baye's Theorem: $Pr[A | B] = Pr[B | A] \cdot Pr[A]/Pr[B]$

- $k \in \{0, ..., 25\}, \Pr[K = k] = 1/26$
- Pr[M = 'a'] = 0.6, Pr[M = 'b'] = 0.4
- $\Pr[C = 'z'] = 1/26$

•
$$\Pr[M = 'a' | C = 'z']$$

= $\Pr[C = 'z' | M = 'a'] \cdot \Pr[M = 'a'] / \Pr[C = 'z']$
= $\frac{1}{26} \cdot \frac{0.6}{\frac{1}{26}}$
= 0.6
= $\Pr[M = 'a']$

Definition 2

Definition 2: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is *perfectly secret* if for every two messages , $m, m' \in \mathcal{M}$, and every ciphertext c (in ciphertext space):

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c],$

where probability is only over K and random coins of Enc.

Definition 1 is equivalent to Definition 2.

Definition 2 => Definition 1.

Given: $\forall m, m', c \Pr[Enc_{\kappa}(m) = c] = \Pr[Enc_{\kappa}(m') = c]$ To prove: \forall distribution on \mathcal{M} , m, and c for which $\Pr[C = c] > 0,$ $\Pr[M = m \mid C = c] = \Pr[M = m]$ $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\frac{\Pr[Enc_K(m)=c] \cdot \Pr[M=m]}{\sum_{m'} \Pr[C = c | M = m'] \cdot \Pr[M=m']}$ $= \frac{\Pr[Enc_K(m)=c] \cdot \Pr[M=m]}{\sum_{m'} \Pr[Enc_K(m)=c] \cdot \Pr[M=m']} = \frac{\Pr[M=m]}{\sum_{m'} \Pr[M=m']}$ $= \Pr[M = m]$

Try on your own: Definition 1 => Definition 2

Definition 3 (Game Style)

 $\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}$

- 1. A outputs $m_0, m_1 \in \mathcal{M}$.
- 2. $b \leftarrow \{0,1\}, k \leftarrow$ Gen(), $c \leftarrow Enc_k(m_b)$
- *3. c* is given to A
- 4. _oA output *b*'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme Π (*Gen*, *Enc*, *Dec*) with message space \mathcal{M} is perfectly indistinguishable if $\forall A$ it holds that: $\Pr[\operatorname{Priv} K_{A,\Pi}^{eav} = 1] = \frac{1}{2}$ A can always succeed with

probability ½. How?

Challenge ciphertext

Lemma (Prove on your own): Encryption scheme Π is *perfectly secret* if and only if it is *perfectly indistinguishable*.

The One-Time Pad

Fix and integer ℓ , \mathcal{M} , \mathcal{K} , $C = \{0,1\}^{\ell}$

- Gen: output a uniform value from \mathcal{K}
- $Enc_k(m)$: where $m \in \{0,1\}^{\ell}$, output $c := k \oplus m$
- $Dec_k(c)$: output $m := k \oplus c$
- Correctness: $Dec_k(Enc_k(m)) = k \oplus k \oplus m = m$
- Security: $\forall m, c, \Pr[Enc_K(m) = c] = 2^{-\ell}$. Or, $\forall m, m', c, \Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Thank You!

