CS171: Cryptography

Lecture 20

Sanjam Garg

Zero-Knowledge Proof System

$$
C(x, w)=1
$$

- Syntax: Two algorithms, $P\left(1^{n}, x, w\right)$ and $V\left(1^{n}, x\right)$.
- Completeness: Honest prover convinces an honest verifier with overwhelming probability.

$$
\operatorname{Pr}\left[V \text { outputs } 1 \text { in the interaction } P\left(1^{n}, x, w\right) \leftrightarrow V\left(1^{n}, x\right)\right]=1-\operatorname{neg}(n)
$$

- Soundness: A PPT cheating prover P^{*} cannot make a Verifier accept a false statement. For all PPT P^{*}, x such that $\forall w, C(x, w)=0$ then we have that

$$
\operatorname{Pr}\left[V \text { outputs } 1 \text { in the interaction } P^{*}\left(1^{n}, x\right) \leftrightarrow V\left(1^{n}, x\right)\right]=\operatorname{neg}(n)
$$

- Zero-Knowledge: The proof doesn't leak any information about the witness w. \exists a PPT simulator \mathcal{S} that for all PPT V^{*}, x, w such that $C(x, w)=1$, we have that \forall PPT D :

$$
\mid \operatorname{Pr}\left[D\left(V^{*} \text { s view in } P\left(1^{n}, x, w\right) \leftrightarrow V^{*}\left(1^{n}, x\right)\right)=1\right]-\operatorname{Pr}\left[D\left(\mathcal{S}^{V^{*}}\left(1^{n}, x\right)\right)=1\right] \mid \leq \operatorname{neg}(n)
$$

Graph Three Coloring Problem

- Graph $G=(V, E)$.
- Task: Show a coloring function $c: V \rightarrow\{R, B, G\}$ such that such that $\forall(u, v) \in E$, we have that $c(u) \neq c(v)$.

- Not every graph is three-colorable. Figuring out whether a graph is three-colorable is believed to be computationally hard.

Zero-Knowledge Proof System for Graph Three Coloring Problem

$$
\forall(u, v) \in E, c(u) \neq c(v)
$$

Completeness: Note $c(u) \neq c(v)$. Thus, $\pi(c(u)) \neq \pi(c(v))$ and verifier accepts.
Soundness: Let $\operatorname{com}_{v}=\operatorname{Com}\left(\operatorname{col}_{v} ; r_{v}\right)$. Since the graph is not three colorable $\exists e=(u, v) \in E$ such that col $_{u}=$ col $_{v}$. Verifier

Verifier

$$
\begin{aligned}
& \text { Verifier outputs } 1 \text { if } \\
& \operatorname{com}_{u}=\operatorname{Com}\left(\operatorname{col}_{u} ; r_{u}\right), \\
& \operatorname{com}_{v}=\operatorname{Com}\left(\operatorname{col}_{v} ; r_{v}\right) \\
& \text { and } \operatorname{col}_{u} \neq \operatorname{col}_{v} \text { and } 0 \\
& \text { otherwise. }
\end{aligned}
$$ challenges on this edge e with probability $1 /|E|$. Thus, rejects with probability at least $\frac{1}{|E|}$

Soundness Amplification

$\forall(u, v) \in E, c(u) \neq c(v)$

- Repeat the protocol $n|E|$ times.
- A malicious prover succeeds in the $i^{t h}$ execution with probability $\leq\left(1-\frac{1}{|E|}\right)$.
- A malicious prover succeds in all $n|E|$ execution with probability
$\leq\left(1-\frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$ which is negligible
in n.

Zero Knowledge (Simulator)

- The verifier is now malicious and can have arbitrary behavior and output.
- Simulator attempts to generate an indistinguishable output - without the witness's knowledge.

- $\operatorname{Pr}\left[e=e^{*}\right]=1 /|E|$. Furthermore, when this happens, the output of the adversary is indistinguishable from the case with an honest prover. (Note that commitment is hiding.)
- Simulator runs the malicious verifier roughly $|E|$ times to get an output.

Zero Knowledge - Simulation by Cropping Undesirable Parts

- Great skill?
- Took 156 attempts.
- Hard to distinguish.

Zero Knowledge - Simulator output is Indistingusiable

$\forall(u, v) \in E, c(u) \neq c(v)$

Hybrid H_{0}.
$\forall(u, v) \in E, c(u) \neq c(v)$

Hybrid H_{1}.(Information theoretically indistinguishable from H_{0}. Cropping Argument.)
$\forall(u, v) \in E, c(u) \neq c(v)$

Hybrid H_{2}. (Indistinguishable from H_{1} using the hiding property of the commitment scheme.)

Hybrid H_{3}. (Only renaming things from H_{3}. Not using c anymore.)

Thank You!

