CS171: Cryptography Lecture 20

Sanjam Garg

Zero-Knowledge Proof System

▶ Completeness: Honest prover convinces an honest verifier with overwhelming probability.

 $\Pr[V \text{ outputs } 1 \text{ in the interaction } P(1^n, x, w) \leftrightarrow V(1^n, x)] = 1 - \operatorname{neg}(n)$

Soundness: A PPT cheating prover P* cannot make a Verifier accept a false statement. For all PPT P*, x such that \(\forall w, C(x, w) = 0\) then we have that

 $\Pr[V \text{ outputs } 1 \text{ in the interaction } P^*(1^n, x) \leftrightarrow V(1^n, x)] = \operatorname{neg}(n)$

Zero-Knowledge: The proof doesn't leak any information about the witness w. ∃ a PPT simulator S that for all PPT V*, x, w such that C(x, w) = 1, we have that ∀ PPT D: $\left| \Pr[D(V^*'s \text{ view in } P(1^n, x, w) \leftrightarrow V^*(1^n, x)) = 1] - \Pr[D(S^{V^*}(1^n, x)) = 1] \right| \le \operatorname{neg}(n)$

Graph Three Coloring Problem

- Graph G = (V, E).
- ▶ Task: Show a coloring function $c : V \to \{R, B, G\}$ such that such that $\forall (u, v) \in E$, we have that $c(u) \neq c(v)$.

Not every graph is three-colorable. Figuring out whether a graph is three-colorable is believed to be computationally hard.

Zero-Knowledge Proof System for Graph Three Coloring Problem

with probability at least $\frac{1}{|F|}$

 $\forall (u, v) \in E, c(u) \neq c(v)$

Soundness Amplification

- ▶ Repeat the protocol n|E| times.
- ► A malicious prover succeeds in the *ith* execution with probability ≤ (1 ¹/_{|E|}).
- A malicious prover succeds in all n|E| execution with probability

 $\leq \left(1 - rac{1}{|E|}
ight)^{n|E|} pprox e^{-n}$ which is negligible in n.

Zero Knowledge (Simulator)

- The verifier is now malicious and can have arbitrary behavior and output.
- Simulator attempts to generate an indistinguishable output — without the witness's knowledge.

- Pr[e = e*] = 1/|E|. Furthermore, when this happens, the output of the adversary is indistinguishable from the case with an honest prover. (Note that commitment is hiding.)
- Simulator runs the malicious verifier roughly |E| times to get an output.

Zero Knowledge - Simulation by Cropping Undesirable Parts

- Great skill?
- ► Took 156 attempts.
- ► Hard to distinguish.

Zero Knowledge — Simulator output is Indistingusiable

Thank You!