CS171: Cryptography

Lecture 21

Sanjam Garg

Plan for today

- Saw zero-knowledge protocol for the graph three coloring problem.
- Today: zero-knowledge protocol for graph hamiltonicity.
- Extending to arbitrary computation NP-complete.
- Succinct Arguments.

Zero-Knowledge Proof System

$$
C(x, w)=1
$$

- Syntax: Two algorithms, $P\left(1^{n}, x, w\right)$ and $V\left(1^{n}, x\right)$.
- Completeness: Honest prover convinces an honest verifier with overwhelming probability.

$$
\operatorname{Pr}\left[V \text { outputs } 1 \text { in the interaction } P\left(1^{n}, x, w\right) \leftrightarrow V\left(1^{n}, x\right)\right]=1-\operatorname{neg}(n)
$$

- Soundness: A PPT cheating prover P^{*} cannot make a Verifier accept a false statement. For all PPT P^{*}, x such that $\forall w, C(x, w)=0$ then we have that

$$
\operatorname{Pr}\left[V \text { outputs } 1 \text { in the interaction } P^{*}\left(1^{n}, x\right) \leftrightarrow V\left(1^{n}, x\right)\right]=\operatorname{neg}(n)
$$

- Zero-Knowledge: The proof doesn't leak any information about the witness w. \exists a PPT simulator \mathcal{S} that for all PPT V^{*}, x, w such that $C(x, w)=1$, we have that \forall PPT D :

$$
\mid \operatorname{Pr}\left[D\left(V^{* \prime} s \text { view in } P\left(1^{n}, x, w\right) \leftrightarrow V^{*}\left(1^{n}, x\right)\right)=1\right]-\operatorname{Pr}\left[D\left(\mathcal{S}^{V^{*}}\left(1^{n}, x\right)\right)=1\right] \mid \leq \operatorname{neg}(n)
$$

Graph Hamiltonian Cycle Problem

- Graph $G=(V, E)$ with $V=\{1, \ldots n\}$.
- Represent as a $n \times n$ matrix M such that $M_{i, j}=1$ if $(i, j) \in E$ and $M_{i, j}=0$ otherwise.
- Task: Does these exist a cycle $C \subseteq E$ in G that visits each vertex exactly once?

- Figuring out whether a graph has a Hamiltonian Cycle is believed to be computationally hard.

Zero-Knowledge Proof System for Graph Hamiltonicity Problem

$\exists C \subseteq E$ - a Hamiltonian Cycle in G.

Zero-Knoweldge: Cropping Argument. Like Graph 3 Coloring.

Extending to any computation

- Give C, x we can construct a graph $G=(V, E)$.
- Such that: \exists a hamiltonian cycle in G if and only if $\exists w$ such that $C(x, w)=1$.
- Very useful!

Succinct Non-Interactive Argument System (SNARG)

- Completeness: An honest prover should be able to convince an honest verifier with overwhelming probability.
- Soundness: A PPT cheating prover cannot generate an accepting proof for a false statement.
- Zero-Knowledge: The proof doesn't leak any information about the witness w.
- Not all applications need zero knowledge, e.g. zk-rollups.

Polynomial equality check

- Alice has a string $A=\left(a_{0}, \ldots a_{n-1}\right)$ and Bob has $B=\left(b_{0}, \ldots b_{n-1}\right)$ where each $a_{i}, b_{i} \in\{0,1\}$.
- They want to check if $A \stackrel{?}{=} B$ with minimal communication.
- Let q be large prime.
- Alice computes polynomial $a(x)=\sum_{i} a_{i} \cdot x^{i} \bmod q$ at a random point $r \in\{0, \ldots q-1\}$ and sends $y=a(r)$ to Bob.
- bob computes polynomial $b(x)=\sum_{i} b_{i} \cdot x^{i} \bmod q$ at point r and checks that $y=b(r)$. If yes, then Bob assertains that $A=B$ and no otherwise.
- If $a(x) \neq b(x)$ then

$$
\operatorname{Pr}_{r}[A(r)=B(r)] \leq \frac{n-1}{q}
$$

Verifying Matrix Multiplication

- Given two input matrices $A, B \in \mathbb{F}^{n \times n}$ we want to compute $A \cdot B$.
- Let's say $\mathbb{F}=\{0, \ldots p-1\}$ and addition, multiplication and division are modulo p.
- Fastest know algorithm takes time $n^{2.37}$.
- Can a prover P who knows the answer C convince a verifier V that the answer is correct in less time?
- Yes, here is the protocol.
- Both P and V get A, B, C and P wants to convince V that $C=A \cdot B$.
- Verifier picks random $r \in \mathbb{F}$.
- Let $x=\left(r, r^{2}, \ldots r^{n}\right)$.
- V checks if $C \cdot x \stackrel{?}{=} A \cdot B \cdot x$.
- Takes time $O\left(n^{2}\right)$.
- If $A \cdot B=C$ then V accepts with probability 1 .
- If $A \cdot B \neq C$ then V accepts with probability $\leq n /|\mathbb{F}|$.

Check the roots of a polynomial

- P wants to prove that a given poylonomial $f(x)$ evlautes to 0 on inputs $H=\{0,1, \ldots n-1\}$.
- Note that $\prod_{i \in H}(x-i) \mid f(x)$.
- Or, $f(x)=g(x) \cdot Z_{H}(x)$, where $Z_{H}(x)=\prod_{i \in H}(x-i)$.
- P commits to $f(x)$ and $g(x)$.
- V samples a random challenge r and sends to P.
- P opens $f(r)$ and $g(r)$.
- V checks that $f(r)=g(r) \cdot Z_{H}(r)$.
- What is V 's running time? Grows with $|H|$. Can we make it smaller?

Choice of H

- Using $H=\{0,1 \ldots n-1\}$ is inefficient.
- Instead we use $H=\left\{\omega, \ldots \omega^{n}\right\}$ the $n^{t h}$ (where $n=2^{k}$) roots of unity $\omega^{n}=1$ and $\omega^{n / 2} \neq 1$. The exponent space needs to be such that 2^{k} divides $p-1$, which is the case for BLS12-381 for $k=32$.
- How do we find these roots of unity?
- By Fermat's Littel Theorem for all $\alpha \in \mathbb{Z}_{p}$ we have $\alpha^{p-1}=1$.
- For a random α, set $\omega=\alpha^{\frac{p-1}{n}}$ is one of the $n^{\text {th }}$ roots of unity in \mathbb{F}. Check if $\omega^{n}=1$ and $\omega^{n / 2} \neq 1$. If not true, then repeat. Have to do it only once.

What do we gain?

- $Z_{H}(x)=(x-\omega)\left(x-\omega^{2}\right) \ldots(x-1)=\left(x^{n}-1\right)$
- $L_{i}(x)=L_{\omega^{i}}(x)=\frac{\prod_{j \neq i}\left(x-\omega^{j}\right)}{\prod_{j \neq i}\left(\omega^{i}-\omega^{j}\right)}=\frac{\omega^{i}}{n} \cdot \frac{x^{n}-1}{x-\omega^{i}}$.

KZG Polynomial Commitment/Pairing Curve BLS12-381

- Gives groups $G_{1}=\left\langle g_{1}\right\rangle, G_{2}=\left\langle g_{2}\right\rangle$ and G_{T} (of the same prime order p) along with a bilinear pairing operation e.
- For every $\alpha, \beta \in \mathbb{Z}_{p}^{*}$, we have that $e\left(g_{1}^{\alpha}, g_{2}^{\beta}\right)=e\left(g_{1}, g_{2}\right)^{\alpha \beta}$.
- Setup: srs generation that supports committing to degree $d-1$ polynomials:
- Sample $\tau \leftarrow \mathbb{Z}_{\rho}^{*}$.
- $\operatorname{srs}=\left(h_{0}=g_{1}, h_{1}=g_{1}^{\tau}, g_{1}^{\tau^{2}}, \ldots . . h_{d}=g_{1}^{\tau^{d-1}}, g_{2}, h^{\prime}=g_{2}^{\tau}\right)$
- Commitment: Given srs and a polynomial $f(x)=c_{0}+c_{1} x+\ldots c_{d-1} x^{d-1}$ of degree $d-1$, we can compute $\operatorname{Com}(f)$ as:

$$
F=\operatorname{Com}(f)=g_{1}^{f(\tau)}=\prod_{i=0}^{d-1} h_{i}^{c_{i}}
$$

- Opening: Show that $f(z)=s$. In this case, $g(x)=f(x)-s$ is such that $g(z)=0$. Or, $x-z$ divides $f(x)-s$.
- Sender computes $T(x)=\frac{f(x)-f(z)}{x-z}$ and sends $W=\operatorname{Com}(T)$.
- Receiver Accepts if: $e\left(\frac{F}{g_{1}^{s}}, g_{2}\right)=e\left(W, \frac{h^{\prime}}{g_{2}^{z}}\right)$.

Permutation Check: How to Prove - Warmup!

Permutation Check: How to check that $\sigma\left(\zeta_{1} \ldots \zeta_{n}\right)=\left(\zeta_{1} \ldots \zeta_{n}\right)$.

How to test?

- Check two multisets $\left(\zeta_{1}, \zeta_{2} \ldots \zeta_{n}\right)$ and $\left(\zeta_{1}^{\prime}, \zeta_{2}^{\prime} \ldots \zeta_{n}^{\prime}\right)$ are the same. How about a check:

$$
\prod_{i} \zeta_{i} \stackrel{?}{=} \prod_{i} \zeta_{i}^{\prime}
$$

- How about this instead over polynomials?

$$
\prod_{i}\left(\zeta_{i}+x\right) \stackrel{?}{=} \prod_{i}\left(\zeta_{i}^{\prime}+x\right)
$$

- How about a specific permutation σ ?

$$
\prod_{i=1}^{n}\left(\zeta_{i}+i y+x\right) \stackrel{?}{=} \prod_{i=1}^{n}\left(\zeta_{i}+\sigma(i) y+x\right)
$$

