
CS171: Cryptography
Lecture 21

Sanjam Garg

1 / 13



Plan for today

▶ Saw zero-knowledge protocol for the graph three coloring problem.

▶ Today: zero-knowledge protocol for graph hamiltonicity.

▶ Extending to arbitrary computation NP-complete.

▶ Succinct Arguments.

2 / 13



Zero-Knowledge Proof System

Prover Verifier

xx ,w
C(x ,w) = 1

Verifier outputs 0/1.
Prover wants
to keep w
hidden

▶ Syntax: Two algorithms, P(1n, x ,w) and V (1n, x).
▶ Completeness: Honest prover convinces an honest verifier with overwhelming probability.

Pr[V outputs 1 in the interaction P(1n, x ,w) ↔ V (1n, x)] = 1− neg(n)

▶ Soundness: A PPT cheating prover P∗ cannot make a Verifier accept a false statement.
For all PPT P∗, x such that ∀w ,C (x ,w) = 0then we have that

Pr[V outputs 1 in the interaction P∗(1n, x) ↔ V (1n, x)] = neg(n)

▶ Zero-Knowledge: The proof doesn’t leak any information about the witness w . ∃ a PPT
simulator S that for all PPT V ∗, x ,w such that C (x ,w) = 1, we have that ∀ PPT D:∣∣∣Pr[D(V ∗’s view in P(1n, x ,w) ↔ V ∗(1n, x)) = 1]− Pr[D(SV ∗

(1n, x)) = 1]
∣∣∣ ≤ neg(n)

3 / 13



Graph Hamiltonian Cycle Problem

▶ Graph G = (V ,E ) with V = {1, . . . n}.
▶ Represent as a n × n matrix M such that Mi,j = 1 if (i , j) ∈ E and Mi,j = 0 otherwise.

▶ Task: Does these exist a cycle C ⊆ E in G that visits each vertex exactly once?

A B

C D

▶ Figuring out whether a graph has a Hamiltonian Cycle is believed to be computationally
hard.

4 / 13



Zero-Knowledge Proof System for Graph Hamiltonicity Problem

Prover Verifier

G = (V ,E)G = (V ,E),C

∃C ⊆ E — a Hamiltonian Cycle in G.

Samples random
permutation α :
{1, . . . n} → {1, . . . n}
and randomness ri,j
for i , j ∈ {1, . . . n}.
Set δi,j = 1 if
(α(i), α(j)) ∈ E and
0 otherwise.

∀i , j , comi,j = Com(δi,j ; ri,j).

Sample uniform
b ← {0, 1}.

Challenge b

If b = 0 then send α,∀i , j ri,j
If b = 1 then send ri,j∀i , j

such that (α(i), α(j)) ∈ C
If b = 0 then verifier
checks that commitments
are well-formed. If b = 1
then it checks that the
commited/permuted
graph has a Hamiltonian
cycle.

Completeness: Since G has a Hamiltonian Cycle C , Verifier
should accept in both cases.

Soundness: Let comi,j = Com(δi,j ; ri,j). Since the graph is not
Hamiltonian either committed graph is not a permutation of G or
the committed graph doesn’t have a cycle. Verifier rejects with
probability at least 1

2
. Amplification by repetition.

Zero-Knoweldge: Cropping Argument. Like Graph 3 Coloring. 5 / 13



Extending to any computation

▶ Give C , x we can construct a graph G = (V ,E ).

▶ Such that: ∃ a hamiltonian cycle in G if and only if ∃w such that C (x ,w) = 1.

▶ Very useful!

6 / 13



Succinct Non-Interactive Argument System (SNARG)

Prover Verifier

srs, x ,w C(x ,w) = 1 srs, x

π

π could be zero-
knowledge or not

|π| ≪ |C |

Verification time,
post pre-processing,
is ≪ |C |.

structured
reference
string

▶ Completeness: An honest prover should be able to convince an honest verifier with
overwhelming probability.

▶ Soundness: A PPT cheating prover cannot generate an accepting proof for a false
statement.

▶ Zero-Knowledge: The proof doesn’t leak any information about the witness w .
▶ Not all applications need zero knowledge, e.g. zk-rollups.

7 / 13



Polynomial equality check

▶ Alice has a string A = (a0, . . . an−1) and Bob has B = (b0, . . . bn−1) where each
ai , bi ∈ {0, 1}.

▶ They want to check if A
?
= B with minimal communication.

▶ Let q be large prime.

▶ Alice computes polynomial a(x) =
∑

i ai · x i mod q at a random point r ∈ {0, . . . q − 1}
and sends y = a(r) to Bob.

▶ bob computes polynomial b(x) =
∑

i bi · x i mod q at point r and checks that y = b(r).
If yes, then Bob assertains that A = B and no otherwise.

▶ If a(x) ̸= b(x) then

Pr
r
[A(r) = B(r)] ≤ n − 1

q

8 / 13



Verifying Matrix Multiplication

▶ Given two input matrices A,B ∈ Fn×n we want to compute A · B.
▶ Let’s say F = {0, . . . p − 1} and addition, multiplication and division are modulo p.

▶ Fastest know algorithm takes time n2.37.

▶ Can a prover P who knows the answer C convince a verifier V that the answer is correct
in less time?

▶ Yes, here is the protocol.

▶ Both P and V get A,B,C and P wants to convince V that C = A · B.
▶ Verifier picks random r ∈ F.
▶ Let x = (r , r2, . . . rn).

▶ V checks if C · x ?
= A · B · x .

▶ Takes time O(n2).

▶ If A · B = C then V accepts with probability 1.

▶ If A · B ̸= C then V accepts with probability ≤ n/|F|.

9 / 13



Check the roots of a polynomial

▶ P wants to prove that a given poylonomial f (x) evlautes to 0 on inputs
H = {0, 1, . . . n − 1}.

▶ Note that
∏

i∈H(x − i) | f (x).
▶ Or, f (x) = g(x) · ZH(x), where ZH(x) =

∏
i∈H(x − i).

▶ P commits to f (x) and g(x).

▶ V samples a random challenge r and sends to P.

▶ P opens f (r) and g(r).

▶ V checks that f (r) = g(r) · ZH(r).

▶ What is V ’s running time? Grows with |H|. Can we make it smaller?

10 / 13



Choice of H

▶ Using H = {0, 1...n − 1} is inefficient.

▶ Instead we use H = {ω, ...ωn} the nth (where n = 2k) roots of unity ωn = 1 and ωn/2 ̸= 1.
The exponent space needs to be such that 2k divides p − 1, which is the case for
BLS12-381 for k = 32.

▶ How do we find these roots of unity?

▶ By Fermat’s Littel Theorem for all α ∈ Zp we have αp−1 = 1.

▶ For a random α, set ω = α
p−1
n is one of the nth roots of unity in F. Check if ωn = 1 and

ωn/2 ̸= 1. If not true, then repeat. Have to do it only once.

What do we gain?

▶ ZH(x) = (x − ω)(x − ω2)...(x − 1) = (xn − 1)

▶ Li (x) = Lωi (x) =
∏

j ̸=i (x−ωj )∏
j ̸=i (ω

i−ωj ) =
ωi

n · xn−1
x−ωi .

11 / 13



KZG Polynomial Commitment/Pairing Curve BLS12-381

▶ Gives groups G1 = ⟨g1⟩,G2 = ⟨g2⟩ and GT (of the same prime order p) along with a
bilinear pairing operation e.

▶ For every α, β ∈ Z∗
p, we have that e(gα

1 , g
β
2 ) = e(g1, g2)

αβ .
▶ Setup: srs generation that supports committing to degree d − 1 polynomials:

▶ Sample τ ← Z∗
p .

▶ srs = (h0 = g1, h1 = gτ
1 , g

τ2

1 , ....hd = gτd−1

1 , g2, h
′ = gτ

2 )

▶ Commitment: Given srs and a polynomial f (x) = c0 + c1x + ...cd−1x
d−1 of degree d − 1,

we can compute Com(f ) as:

F = Com(f ) = g
f (τ)
1 =

d−1∏
i=0

hcii

▶ Opening: Show that f (z) = s. In this case, g(x) = f (x)− s is such that g(z) = 0. Or,
x − z divides f (x)− s.

▶ Sender computes T (x) = f (x)−f (z)
x−z and sends W = Com(T ).

▶ Receiver Accepts if: e
(

F
g s
1
, g2

)
= e

(
W , h′

g z
2

)
.

12 / 13



Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that σ(ζ1...ζn) = (ζ1...ζn).

How to test?

▶ Check two multisets (ζ1, ζ2...ζn) and (ζ ′1, ζ
′
2...ζ

′
n) are the same. How about a check:∏

i

ζi
?
=

∏
i

ζ ′i

▶ How about this instead over polynomials?∏
i

(ζi + x)
?
=

∏
i

(ζ ′i + x)

▶ How about a specific permutation σ?

n∏
i=1

(ζi + iy + x)
?
=

n∏
i=1

(ζi + σ(i)y + x)

13 / 13


	Introduction
	Introduction

