CS171: Cryptography

Lecture 22

Sanjam Garg

Plan for today

- Succinct Arguments.

Succinct Non-Interactive Argument System (SNARG)

- Completeness: An honest prover should be able to convince an honest verifier with overwhelming probability.
- Soundness: A PPT cheating prover cannot generate an accepting proof for a false statement.
- Zero-Knowledge: The proof doesn't leak any information about the witness w.
- Not all applications need zero knowledge, e.g. zk-rollups.

Polynomial Commitment

- P can commit to some polnomial f of some ia priori fixed maximum degree.
- We denote the commitment to f by $[f]$.
- The commiter can open $[f]$ at any input r and prove that the provided opening $f(r)$ is correct with respect to the previously provided commitment [f].

Check the roots of a polynomial

$$
\forall x \in H, f(x)=0
$$

- $f(x) \neq 0$.
- $H=\left\{\omega, \omega^{2} \ldots \omega^{n}\right\}$.
- $Z_{H}(x)=\prod_{\alpha \in H}(x-\alpha)=x^{n}-1$.
- $Z_{H}(r)=r^{n}-1$ can be computed efficiently in $O(\log n)$ time using the repeated squaring algorithm.

Check relationship between two polynomials (Example)

$$
\forall x \in H, f(x)=2 \cdot g(x)
$$

- $H=\left\{\omega, \omega^{2} \ldots \omega^{n}\right\}$.
- $Z_{H}(x)=\prod_{\alpha \in H}(x-\alpha)=x^{n}-1$.
- $f(x)$ is a polynomial such that for each $\omega^{i} \in H, f\left(\omega^{i}\right)=2 \cdot i$.
$-g(x)$ is a polynomial such that for each $\omega^{i} \in H, g\left(\omega^{i}\right)=i$.
- As polynomials $f(x) \neq 2 g(x)$.
$-Z_{H}(r)=r^{n}-1$ can be computed efficiently in $O(\log n)$ time using the repeated squaring algorithm.

Check two multisets A and B are the same

$$
\{\forall x \in H, f(x)\}=\{\forall x \in H, g(x)\}
$$

- $A=\left\{a_{1}, \ldots a_{n}\right\}$ and $B=\left\{b_{1}, \ldots b_{n}\right\}$.
- $f(x)$ is a polynomial such that for each $\omega^{i} \in H, f\left(\omega^{i}\right)=a_{i}$.
- $g(x)$ is a polynomial such that for each $\omega^{i} \in H, g\left(\omega^{i}\right)=b_{i}$.
- As polynomials $f(x) \neq g(x)$.
- Note that $z(\omega)=z\left(\omega^{n+1}\right)=1$. And we have that $\forall i \in 1, \ldots n, z\left(\omega^{i+1}\right)=z\left(\omega^{i}\right) \cdot \frac{a_{i}+\gamma}{b_{i}+\gamma}$.
- Prove: (i) $z(\omega)=1$, and (ii) $\forall x \in H$ we have that $z(x \omega)(g(x)+\gamma)-z(x)(f(x)+\gamma)=0$.

Permutation Check: How to Prove - Warmup!

Permutation Check: How to check that $\sigma\left(a_{1} \ldots a_{n}\right)=\left(b_{1} \ldots b_{n}\right)$?
$-\sigma^{(1)}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as a function that permuates the input vector.

- $\sigma^{(2)}:\{1, \ldots n\} \rightarrow\{1, \ldots n\}$ as a function that maps input index to output index of the permuatation.
$-\sigma^{(3)}: H \rightarrow H$ as a polynomial that maps ω^{i} to $\omega^{\sigma^{(2)}(i)}$.
- For the identity permutation: $\sigma^{(3)}(x)=x$.
- Will refer to $\sigma^{(1)}, \sigma^{(2)}$, and $\sigma^{(3)}$ as just σ when clear from context.

Permutation Check: How to Prove - Warmup!

Permutation Check: How to check that $\sigma\left(a_{1} \ldots a_{n}\right)=\left(b_{1} \ldots b_{n}\right)$?
$f(x)$ and $g(x)$ are such that $\forall \omega^{i} \in H, f\left(\omega^{i}\right)=a_{i}$ and $g\left(\omega^{i}\right)=b_{i}$.
Pre-Processing Step: P and V generate $[\sigma]$ - commitment to σ in the pre-processing step.

How to test?

- For verifier chosen β, γ consider polynomial z (that Prover commits) such that for all $i \in\{1, \ldots n\}$

$$
z\left(\omega^{i}\right)=\prod_{j=1}^{i-1} \frac{a_{j}+\beta \cdot \sigma\left(\omega^{j}\right)+\gamma}{b_{j}+\beta \cdot \omega^{j}+\gamma}
$$

- Verifier checks that (i) $z(\omega)=1$, and (ii) for all $x \in H$ we have that $\frac{z(x \omega)}{z(x)}=\frac{a_{i}+\beta \cdot \sigma(x)+\gamma}{b_{i}+\beta \cdot x+\gamma}$.
- Note that $z\left(\omega^{n+1}\right)=z(\omega)=1$. (Only need to prove once!)
- Prove that $\forall x \in H$ we have that $z(x \cdot \omega) \cdot(g(x)+\beta \cdot x+\gamma)$ $-z(x) \cdot(f(x)+\beta \cdot \sigma(x)+\gamma)=0$.

Prove that $\sigma(A)=B$

$$
\sigma\left(f(\omega) \ldots f\left(\omega^{n}\right)\right)=\left(g(\omega) \ldots g\left(\omega^{n}\right)\right)
$$

- Note that $z(\omega)=z\left(\omega^{n+1}\right)=1$. And we have that $\forall i \in 1, \ldots n, z\left(\omega^{i+1}\right)=z\left(\omega^{i}\right) \cdot \frac{a_{i}+\beta \sigma\left(\omega^{i}\right)+\gamma}{b_{i}+\beta \omega^{i}+\gamma}$.
- Prove: (i) $z(\omega)=1$, and (ii) $\forall x \in H$ we have that $z(x \omega)(g(x)+\beta x+\gamma)-z(x)(f(x)+\beta \sigma(x)+\gamma)=0$.

$\mathcal{P l o n} \mathcal{K}$ Arithmetization

$\mathcal{C}(x, w)=1$ be a circuit of n gates, where each gate is fan-in 2 and support + and \times gates.
Simplifying setting:

- Ignore zero-knowledge.
- Assume a polynomial commitment scheme (e.g. KZG) - use [f] notation as commitment of f.
- Simplify construction - ignore optimizations.

For the $i^{\text {th }}$ gate in the circuit we have a constraint on input wires values a_{i}, b_{i} and output wire value c_{i} specified by constants $q_{L, i}, q_{R, i}, q_{O, i}, q_{M, i}, q_{C, i}$:

$$
q_{L, i} \cdot a_{i}+q_{R, i} \cdot b_{i}+q_{O, i} \cdot c_{i}+q_{M, i} \cdot a_{i} \cdot b_{i}+q_{C, i}=0
$$

+ gate then $q_{L, i}, q_{R, i}=1, q_{O, i}=-1$ and $q_{M, i}=q_{C, i}=0$.
\times gate then $q_{L, i}, q_{R, i}=0, q_{O, i}=-1$ and $q_{M, i}=1, q_{C, i}=0$.

$$
q_{L}(x)=\sum_{i} q_{L, i} \cdot \delta_{i}(x)
$$

where $\delta_{i}(x)=1$ for $x=i$ and 0 for $x \in H \backslash\{i\}$.
Constraint Checks: Given $H \subset \mathbb{F},|H|=n$, define degree- $n-1$ polynomial $q_{L}(x)$ such that for $\quad 11 / 16$

Constraint Check: How to Prove!

Constraint Check: Prove that for all $x \in\{0, \ldots n-1\}$ we have:

$$
q_{L}(x) \cdot a(x)+q_{R}(x) \cdot b(x)+q_{O}(x) \cdot c(x)+q_{M}(x) \cdot a(x) \cdot b(x)+\left(q_{C}(x)-P I(x)\right)=0
$$

How to test?

- The above is only true if there exists a quotient polynomial $T(x)$ such that

$$
q_{L}(x) \cdot a(x)+q_{R}(x) \cdot b(x)+q_{O}(x) \cdot c(x)+q_{M}(x) \cdot a(x) \cdot b(x)+\left(q_{C}(x)-P I(x)\right)=T(x) \cdot Z_{H}(x) .
$$

- It suffices for the verifier to check the following at a random point $\mathfrak{z} \in \mathbb{F}$:

$$
q_{L}(\mathfrak{z}) \cdot a(\mathfrak{z})+q_{R}(\mathfrak{z}) \cdot b(\mathfrak{z})+q_{O}(\mathfrak{z}) \cdot c(\mathfrak{z})+q_{M}(\mathfrak{z}) \cdot a(\mathfrak{z}) \cdot b(\mathfrak{z})+\left(q_{C}(\mathfrak{z})-P I(\mathfrak{z})\right)=T(\mathfrak{z}) \cdot Z_{H}(\mathfrak{z}),
$$ where the verifier can compute $Z_{H}(\mathfrak{z})$ locally.

- Or, prover commits to $a(x), b(x), c(x)$ and $T(x)$ and opens $\bar{a}=a(\mathfrak{z}), \bar{b}=b(\mathfrak{z}), \bar{c}=c(\mathfrak{z})$ and $T(\mathfrak{z})$ for a verifier chosen \mathfrak{z}.
- Problem: But degree of $T(x)$ is large. So, commit to degree- $n-1 T_{l o}, T_{\text {mid }}, T_{h i}$ such that $T_{10}(x)+T_{\text {mid }}(x) \cdot x^{n}+T_{h i}(x) \cdot x^{2 n}=T(x)$.
- It suffices to prove that the following polynomial is 0 for $x=\mathfrak{z}$:

$$
q_{L}(x) \cdot \bar{a}+q_{R}(x) \cdot \bar{b}+q_{O}(x) \cdot \bar{c}+q_{M}(x) \cdot \bar{a} \cdot \bar{b}+\left(q_{C}(x)-P I(\mathfrak{z})\right)
$$

Permutation Check: How to Prove!

- For a circuit dependent permutation $\sigma:[3 n] \rightarrow[3 n]$ we need to prove $\sigma\left(a_{1}, \ldots a_{n}, b_{1}, \ldots b_{n}, c_{1}, \ldots c_{n}\right)=\left(a_{1}, \ldots a_{n}, b_{1}, \ldots b_{n}, c_{1}, \ldots c_{n}\right)$.
Define $\sigma^{*}(i)= \begin{cases}\omega^{\sigma(i)} & \text { if } \sigma(i) \in\{1 \ldots n\} \\ k_{1} \cdot \omega^{\sigma(i)} & \text { if } \sigma(i) \in\{n+1 \ldots 2 n\} \\ k_{2} \cdot \omega^{\sigma(i)} & \text { if } \sigma(i) \in\{2 n+1 \ldots 3 n\}\end{cases}$
- For $c \in\{1,2,3\}, S_{c}, S_{\sigma c}$ be functions/polynomials $\left\{\omega^{1}, \ldots \omega^{n}\right\} \rightarrow H^{\prime}$ where $H^{\prime}=H \cup\left(k_{1} \cdot H\right) \cup\left(k_{2} \cdot H\right)$ and where $k_{1}, k_{2} \in \mathbb{F}$ are such that $H, k_{1} H, k_{2} H$ give $3 n$ distinct elements.

$$
S_{c}(X)=\left\{\begin{array}{ll}
X & c=1 \\
k_{1} X & c=2, \\
k_{2} X & c=3
\end{array} \quad S_{\sigma c}(X)= \begin{cases}\sigma^{*}(i) & \text { for } c=1 \text { on input } X=\omega^{i} \\
\sigma^{*}(i+n) & \text { for } c=2 \text { on input } X=\omega^{i} \\
\sigma^{*}(i+2 n) & \text { for } c=3 \text { on input } X=\omega^{i}\end{cases}\right.
$$

- Same as before, we define $z(\omega)=1$ and for all $i \in\{2, \ldots n\}$

$$
z\left(\omega^{i}\right)=\prod_{j=1}^{i-1} \frac{a_{j}+\beta \cdot \omega^{j}+\gamma}{a_{j}+\beta \cdot \sigma^{*}(j)+\gamma} \cdot \frac{b_{j}+\beta \cdot k_{1} \cdot \omega^{j}+\gamma}{b_{j}+\beta \cdot \sigma^{*}(j+n)+\gamma} \cdot \frac{c_{j}+\beta \cdot k_{2} \cdot \omega^{j}+\gamma}{c_{j}+\beta \cdot \sigma^{*}(j+2 n)+\gamma}
$$

Permutation Check: How to Prove!

- Need to prove: $z(\omega)=1$
- Need to prove that for $x \in\left\{\omega \ldots \omega^{n}\right\}$ we have that

$$
\begin{gathered}
z(x \omega) \cdot\left(\left(a(x)+\beta S_{\sigma 1}(x)+\gamma\right)\left(b(x)+\beta S_{\sigma 2}(x)+\gamma\right)\left(c(x)+\beta S_{\sigma 3}(x)+\gamma\right)\right)- \\
z(x) \cdot\left((a(x)+\beta x+\gamma) \quad\left(b(x)+k_{1} \beta x+\gamma\right) \quad\left(c(x)+k_{2} \beta x+\gamma\right)\right)=0 .
\end{gathered}
$$

- Writing in the same format as other equations, we need to prove $\exists T^{\prime}$ such thatz $(x \omega) \cdot\left(\left(a(x)+\beta S_{\sigma 1}(x)+\gamma\right)\left(b(x)+\beta S_{\sigma 2}(x)+\gamma\right)\left(c(x)+\beta S_{\sigma 3}(x)+\gamma\right)\right)-$

$$
z(x) \cdot\left((a(x)+\beta x+\gamma) \quad\left(b(x)+k_{1} \beta x+\gamma\right) \quad\left(c(x)+k_{2} \beta x+\gamma\right)\right)=T^{\prime}(x) Z_{H}(x)
$$

- Prove by opening at a random point.
- Verifier Precomputes $\left[S_{\sigma 1}\right],\left[S_{\sigma 2}\right],\left[S_{\sigma 3}\right]$.

Making it non-interactive - Fiat-Shamir Heuristic

- Rather than the verifier specifying uniform values, obtain them by computing H (transcript) where transcript is the current value of all the messages so far.

Final Notes

- Interoperatability among implementations: Presentation is a simplified version of the construction from the $\mathcal{P l o n} \mathcal{K}$ paper. https://eprint.iacr.org/2019/953.pdf
- Security proofs are brittle: Small changes in the scheme can affect security. Be careful when you depart from specifications.

