CS171: Cryptography Lecture 22

Sanjam Garg

Plan for today

Succinct Arguments.

Succinct Non-Interactive Argument System (SNARG)

- Completeness: An honest prover should be able to convince an honest verifier with overwhelming probability.
- Soundness: A PPT cheating prover cannot generate an accepting proof for a false statement.
- **Zero-Knowledge**: The proof doesn't leak any information about the witness *w*.
 - Not all applications need zero knowledge, e.g. zk-rollups.

Polynomial Commitment

- ▶ *P* can commit to some polnomial *f* of some ia priori fixed maximum degree.
- ▶ We denote the commitment to *f* by [*f*].
- The commiter can open [f] at any input r and prove that the provided opening f(r) is correct with respect to the previously provided commitment [f].

Check the roots of a polynomial

 $\forall x \in H, f(x) = 0$

- ► $Z_H(x) = \prod_{\alpha \in H} (x \alpha) = x^n 1.$
- ► $Z_H(r) = r^n 1$ can be computed efficiently in $O(\log n)$ time using the repeated squaring algorithm.

Check relationship between two polynomials (Example) $\forall x \in H, f(x) = 2 \cdot g(x)$

- f(x) is a polynomial such that for each $\omega^i \in H$, $f(\omega^i) = 2 \cdot i$.
- g(x) is a polynomial such that for each $\omega^i \in H$, $g(\omega^i) = i$.
- As polynomials $f(x) \neq 2g(x)$.

► $Z_H(r) = r^n - 1$ can be computed efficiently in $O(\log n)$ time using the repeated squaring algorithm.

Check two multisets A and B are the same

 $\{\forall x \in H, f(x)\} = \{\forall x \in H, g(x)\}$

•
$$A = \{a_1, \ldots, a_n\}$$
 and $B = \{b_1, \ldots, b_n\}$.

- f(x) is a polynomial such that for each $\omega^i \in H$, $f(\omega^i) = a_i$.
- ▶ g(x) is a polynomial such that for each $\omega^i \in H$, $g(\omega^i) = b_i$.
- As polynomials $f(x) \neq g(x)$.

▶ Note that $z(\omega) = z(\omega^{n+1}) = 1$. And we have that $\forall i \in 1, ..., n, z(\omega^{i+1}) = z(\omega^i) \cdot \frac{a_i + \gamma}{b_i + \gamma}$.

Prove: (i) $z(\omega) = 1$, and (ii) $\forall x \in H$ we have that $z(x\omega)(g(x) + \gamma) - z(x)(f(x) + \gamma) = 0$.

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that $\sigma(a_1...a_n) = (b_1...b_n)$?

- ▶ $\sigma^{(1)}: \mathbb{F}^n \to \mathbb{F}^n$ as a function that permuates the input vector.
- $\sigma^{(2)}: \{1, \dots, n\} \to \{1, \dots, n\}$ as a function that maps input index to output index of the permuatation.
- $\sigma^{(3)}: H \to H$ as a polynomial that maps ω^i to $\omega^{\sigma^{(2)}(i)}$.
- For the identity permutation: $\sigma^{(3)}(x) = x$.
- ▶ Will refer to $\sigma^{(1)}$, $\sigma^{(2)}$, and $\sigma^{(3)}$ as just σ when clear from context.

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that $\sigma(a_1...a_n) = (b_1...b_n)$? f(x) and g(x) are such that $\forall \omega^i \in H$, $f(\omega^i) = a_i$ and $g(\omega^i) = b_i$. **Pre-Processing Step:** P and V generate $[\sigma]$ - commitment to σ in the pre-processing step.

How to test?

For verifier chosen β, γ consider polynomial z (that Prover commits) such that for all i ∈ {1,...n}

$$z(\omega^i) = \prod_{j=1}^{i-1} rac{a_j + eta \cdot \sigma(\omega^j) + \gamma}{b_j + eta \cdot \omega^j + \gamma}$$

▶ Verifier checks that (i) $z(\omega) = 1$, and (ii) for all $x \in H$ we have that $\frac{z(x\omega)}{z(x)} = \frac{a_i + \beta \cdot \sigma(x) + \gamma}{b_i + \beta \cdot x + \gamma}$.

• Note that $z(\omega^{n+1}) = z(\omega) = 1$. (Only need to prove once!)

Prove that $\forall x \in H$ we have that $z(x \cdot \omega) \cdot (g(x) + \beta \cdot x + \gamma)$ $-z(x) \cdot (f(x) + \beta \cdot \sigma(x) + \gamma) = 0.$ Prove that $\sigma(A) = B$

 $q(r) \cdot Z_H(r)$.

$\mathcal{P}\mathfrak{lon}\mathcal{K}$ Arithmetization

C(x, w) = 1 be a circuit of *n* gates, where each gate is fan-in 2 and support + and × gates.

Simplifying setting:

- Ignore zero-knowledge.
- Assume a polynomial commitment scheme (e.g. KZG) use [f] notation as commitment of f.
- Simplify construction ignore optimizations.

For the *i*th gate in the circuit we have a constraint on input wires values a_i , b_i and output wire value c_i specified by constants $q_{L,i}$, $q_{R,i}$, $q_{O,i}$, $q_{M,i}$, $q_{C,i}$:

$$q_{L,i} \cdot a_i + q_{R,i} \cdot b_i + q_{O,i} \cdot c_i + q_{M,i} \cdot a_i \cdot b_i + q_{C,i} = 0$$

+ gate then $q_{L,i}, q_{R,i} = 1, q_{O,i} = -1$ and $q_{M,i} = q_{C,i} = 0$. × gate then $q_{L,i}, q_{R,i} = 0, q_{O,i} = -1$ and $q_{M,i} = 1, q_{C,i} = 0$.

$$q_L(x) = \sum_i q_{L,i} \cdot \delta_i(x),$$

where $\delta_i(x) = 1$ for x = i and 0 for $x \in H \setminus \{i\}$. Constraint Checks: Given $H \subset \mathbb{F}, |H| = n$, define degree n - 1 polynomial $q_L(x)$ such that for $_{11/16}$

Constraint Check: How to Prove!

Constraint Check: Prove that for all $x \in \{0, ..., n-1\}$ we have:

 $q_L(x) \cdot a(x) + q_R(x) \cdot b(x) + q_O(x) \cdot c(x) + q_M(x) \cdot a(x) \cdot b(x) + (q_C(x) - PI(x)) = 0$

How to test?

- The above is only true if there exists a quotient polynomial T(x) such that $q_L(x) \cdot a(x) + q_R(x) \cdot b(x) + q_O(x) \cdot c(x) + q_M(x) \cdot a(x) \cdot b(x) + (q_C(x) - PI(x)) = T(x) \cdot Z_H(x).$
- ▶ It suffices for the verifier to check the following at a random point $\mathfrak{z} \in \mathbb{F}$:

 $q_{L}(\mathfrak{z}) \cdot a(\mathfrak{z}) + q_{R}(\mathfrak{z}) \cdot b(\mathfrak{z}) + q_{O}(\mathfrak{z}) \cdot c(\mathfrak{z}) + q_{M}(\mathfrak{z}) \cdot a(\mathfrak{z}) \cdot b(\mathfrak{z}) + (q_{C}(\mathfrak{z}) - PI(\mathfrak{z})) = T(\mathfrak{z}) \cdot Z_{H}(\mathfrak{z}),$ where the verifier can compute $Z_{H}(\mathfrak{z})$ locally.

- Or, prover commits to a(x), b(x), c(x) and T(x) and opens ā = a(𝔅), b = b(𝔅), c = c(𝔅) and T(𝔅) for a verifier chosen 𝔅.
- ▶ Problem: But degree of T(x) is large. So, commit to degree n-1 T_{lo} , T_{mid} , T_{hi} such that $T_{lo}(x) + T_{mid}(x) \cdot x^n + T_{hi}(x) \cdot x^{2n} = T(x)$.
- lt suffices to prove that the following polynomial is 0 for $x = \mathfrak{z}$:

 $q_{L}(x) \cdot \overline{a} + q_{R}(x) \cdot \overline{b} + q_{O}(x) \cdot \overline{c} + q_{M}(x) \cdot \overline{a} \cdot \overline{b} + (q_{C}(x) - PI(\mathfrak{z}))$ $- (T_{lo}(x) + T_{mid}(x) \cdot \mathfrak{z}^{n} + T_{bi}(x) \cdot \mathfrak{z}^{2n}) \cdot Z_{H}(\mathfrak{z}) = 0$ ^{12/16}

Permutation Check: How to Prove!

$$S_c(X) = \begin{cases} X & c = 1 \\ k_1 X & c = 2 \\ k_2 X & c = 3 \end{cases} \quad S_{\sigma c}(X) = \begin{cases} \sigma^*(i) & \text{for } c = 1 \text{ on input } X = \omega^i \\ \sigma^*(i+n) & \text{for } c = 2 \text{ on input } X = \omega^i \\ \sigma^*(i+2n) & \text{for } c = 3 \text{ on input } X = \omega^i \end{cases}$$

▶ Same as before, we define $z(\omega) = 1$ and for all $i \in \{2, ...n\}$

$$z(\omega^{i}) = \prod_{j=1}^{i-1} \frac{a_{j} + \beta \cdot \omega^{j} + \gamma}{a_{j} + \beta \cdot \sigma^{*}(j) + \gamma} \cdot \frac{b_{j} + \beta \cdot k_{1} \cdot \omega^{j} + \gamma}{b_{j} + \beta \cdot \sigma^{*}(j+n) + \gamma} \cdot \frac{c_{j} + \beta \cdot k_{2} \cdot \omega^{j} + \gamma}{c_{j} + \beta \cdot \sigma^{*}(j+2n) + \gamma}$$

Permutation Check: How to Prove!

- Need to prove: $z(\omega) = 1$
- ► Need to prove that for $x \in \{\omega...\omega^n\}$ we have that $z(x\omega) \cdot ((a(x) + \beta S_{\sigma 1}(x) + \gamma)(b(x) + \beta S_{\sigma 2}(x) + \gamma)(c(x) + \beta S_{\sigma 3}(x) + \gamma)) - z(x) \cdot ((a(x) + \beta x + \gamma) \qquad (b(x) + k_1\beta x + \gamma) \qquad (c(x) + k_2\beta x + \gamma)) = 0.$
- ▶ Writing in the same format as other equations, we need to prove $\exists T'$ such that $z(x\omega) \cdot ((a(x) + \beta S_{\sigma 1}(x) + \gamma)(b(x) + \beta S_{\sigma 2}(x) + \gamma)(c(x) + \beta S_{\sigma 3}(x) + \gamma)) z(x) \cdot ((a(x) + \beta x + \gamma) \qquad (b(x) + k_1\beta x + \gamma) \qquad (c(x) + k_2\beta x + \gamma)) = T'(x)Z_H(x)$
- Prove by opening at a random point.
- ► Verifier Precomputes $[S_{\sigma 1}], [S_{\sigma 2}], [S_{\sigma 3}].$

Making it non-interactive — Fiat-Shamir Heuristic

Rather than the verifier specifying uniform values, obtain them by computing H(transcript) where transcript is the current value of all the messages so far.

Final Notes

- ► Interoperatability among implementations: Presentation is a simplified version of the construction from the *PlonK* paper. https://eprint.iacr.org/2019/953.pdf
- Security proofs are brittle: Small changes in the scheme can affect security. Be careful when you depart from specifications.