
CS 171 - Cryptography

Sanjam Garg

Lecture 23

(t, n)−Threshold Secret Sharing
▶ A (t, n) threshold secret sharing scheme allows one to split a

secret s into n pieces so that one will need at least t shares to
reconstruct s.

▶ A dealer takes s as input and uses a sharing algorithm to split
the secret s into parts s1 . . . sn to be given parties P1, . . . Pn.

s

BP

s1 s2

· · · · · ·
si sn

s2 sn s
Aggregate ≥ t shares

No-reconstruct
Corrupt < t

▶ Correctness: Any t parties can reconstruct s.
▶ Security: No collusion of < t parties can reconstruct s.

(t, n)−Threshold Secret Sharing

A (t, n)-secret sharing scheme (Share, Reconstruct) is defined as
follows.

▶ Share(s): On input a secret s it outputs shares s1, . . . sn.
▶ Reconstruct({si}i∈T): Outputs s or ⊥.
▶ Correctness: For any T such that |T | ≥ t and secret s we have

that Reconstruct({si}i∈T) = s.
▶ Security: For any T such that |T | < t, secrets s, s′ and

adversary A we have that p = p′ where

p = Pr[A({si}i∈T) = 1 | (s1, . . . sn)← Share(s)],

p′ = Pr[A({s′
i}i∈T) = 1 | (s′

1, . . . s′
n)← Share(s′)].

(2, 2)− Threshold Secret Sharing

▶ Let s ∈ {0, 1}m. How do we (2, 2)-secret share s?
▶ Share(s) : Sample r ← {0, 1}m and output s1 = r and

s2 = s⊕ r.
▶ Reconstruct(s1, s2): Outputs s1 ⊕ s2.
▶ Correctness: By constrcution, s = s1 ⊕ s2.
▶ Security: For any s, each individual s1 or s2 is uniformaly

random. Thus, p = p′ = q where:

q = Pr[A(r) = 1 | r ← {0, 1}m].

(n, n)− Threshold Secret Sharing

▶ Let s ∈ {0, 1}m. How do we (n, n)-secret share s?
▶ Share(s) : Sample r1 . . . rn−1 ← {0, 1}m and output s1 = r1,

s2 = r2 . . . sn−1 = rn−1 and sn = s⊕n−1
i=1 ri.

▶ Reconstruct(s1, s2 . . . sn): Outputs ⊕m
i=1si.

▶ Correctness: By constrcution, s = ⊕m
i=1si.

▶ Security: For any s, T such that |T | < n, {si}i∈T is uniformaly
random. Thus, p = p′ = q where:

q = Pr[A({ri}) = 1 | r1 . . . r|T | ← {0, 1}m].

(3, 3)−Threshold Secret Sharing

▶ Let s ∈ {0, 1}m. How do we (3, 3)-secret share s?
▶ Share(s) : Sample r1, r2 ← {0, 1}m and output

s1 = r1, s2 = r2 and s3 = s⊕ r1 ⊕ r2.
▶ Reconstruct(s1, s2, s3): Outputs s1 ⊕ s2 ⊕ s3.
▶ Correctness: By construction, s = s1 ⊕ s2 ⊕ s3.
▶ Security: For any s, si, sj for any i, j ∈ {1, 2, 3} are uniformaly

random. Thus, p = p′ = q where:

q = Pr[A(r1, r2) = 1 | r1, r2 ← {0, 1}m].

(2, 3)−Threshold Secret Sharing

▶ Let s ∈ {0, 1}m. How do we (2, 3)-secret share s?
▶ Share(s) : Sample r1, r2 ← {0, 1}m. Set r3 = s⊕ r1 ⊕ r2 and

output s1 = (r1, r2), s2 = (r2, r3) and s3 = (r3, r1).
▶ Reconstruct(si, sj): Outputs r1 ⊕ r2 ⊕ r3 where r1, r2, r3 can

be recovered from si, sj .
▶ Correctness: By construction, s = r1 ⊕ r2 ⊕ r3.
▶ Security: For any s, si for any i ∈ {1, 2, 3} is uniformaly

random. Thus, p = p′ = q where:

q = Pr[A(r1, r2) = 1 | r1, r2 ← {0, 1}m].

(2, n)−Threshold Secret Sharing
▶ Let s ∈ {0, 1}m. How do we (2, n)-secret share s (assume

n = 2k)?
▶ Share(s) : Sample r1, . . . rk ← {0, 1}m. For each i = i1 . . . ik

and j = 1 . . . k generate

si,j = rj

if ij = 0 and as
si,j = rj ⊕ s

if ij = 1. Output si = (si,1 . . . si,k)
▶ Reconstruct(si = (si,1 . . . si,k), si′ = (si′,1 . . . si′,k)): Outputs

si,j ⊕ si′,j for a j such that ij ̸= i′
j .

▶ Correctness: This can be checked by construction.
▶ Security: For any s, si is uniformaly random vector of k strings.

Thus, p = p′ = q where:

q = Pr[A(r1, . . . rk) = 1 | r1, . . . rk ← {0, 1}m].

Can we build (t, n)-secret sharing for any t, n such that
t ≤ n?

Yes! Shamir’s Secret Sharing Scheme.

Shamir’s Secret Sharing: Background

▶ We consider a polynomials p(x) ∈ Zq[x] where q is a prime.
▶ p(x) is denoted as a0 + a1x . . . atx

t mod q. If at ̸= 0 then
p(x) has degree t.

▶ p(x) = p′(x) if they have the same degree and agree on all
coefficients.

Theorem: Any two distinct degree-t polynomials agree on at
most t points.
▶ Proof: Suppose that p(x) ̸= p′(x) and p(zi) = p′(zi) for

i ∈ {1 . . . t + 1}.
▶ Let q(x) = p(x)− p′(x). Then we have that q(x) is degree t

and q(x) = 0 for all x ∈ {z1 . . . zt+1}.
▶ However, q(x) is of degree ≤ t and has t + 1 root.

Contradiction!

Shamir’s Secret Sharing

Key idea:
▶ If we have t points of a polynomial of degree t− 1, we can

reconstruct the polynomial. Moreover, the polynomial is
unique.

Theorem: Given t distinct input/output points
(x1, y1) . . . (xt, yt), we can find in poly time the unique
degree-(t− 1) polynomial p(x), where p(xi) = yi for
i ∈ {1 . . . t}.

(t, n)−Shamir’s Secret Sharing
Main Idea: To share s ∈ Zq: choose a random degree t− 1
polynomial p(x) such that p(0) = s. Give out the shares
(p(1), . . . , p(n)).
▶ Given t shares, we can reconstruct p(x), and can then recover

p(0).

Sharing:
▶ Given a secret s ∈ Zq, choose p(x) = s + a1x + . . . at−1xt−1,

where ai’s are chosen randomly in Zq. Give out the shares
(p(1), . . . , p(n)).

Reconstruct:
▶ Given t values (i1, p(i1), . . . , (t, p(it)), reconstruct p and

output p(0).

Practice Problem

▶ Given encryption schemes Π1 . . . Πn (where
Πi = (Geni, Enci, Deci)) such that at least t of them are
CPA-secure. Construct an encryption scheme that is
CPA-secure.

(t, n)-Threshold Signature [Desmedt’87, Desmedt-Frankel’89]

BP

sk1 sk2

· · · · · ·
ski skn

σ2 σn

m
sg

m
sg

σ
Aggregate ≥ t signatures

Unforgeability
Corrupt + PartialSig < t

▶ A succinct (constant-size) public/verification key vk.
▶ Aggregated signatures σ are succinct (constant-size).
▶ Widely used in blockchain applications.

BLS Signature [Boneh-Lynn-Shacham’01]

▶ s← Zq, vk = gs.
▶ Signature is σ = H(msg)s.
▶ Verify signature: e(H(msg), vk) ?= e(σ, g)

BLS Multisignature: n-out-of-n threshold signature
▶ Each party picks si ← Zq, vki = gsi

▶ Partial signature σi = H(msg)si
e(H(msg), vk1) ?= e(σ1, g)

...

e(H(msg), vkn) ?= e(σn, g)

▶ Verification key aVK =
∏

i vki

▶ Aggregated Signature σ =
∏

i σi

▶ Verify signature: e(H(msg), aVK) ?= e(σ, g)

BLS t-out-of-n threshold signature
▶ Generate s← Zq, vk = gs.
▶ vk is published, ith party receives si.
▶ s1, . . . , sn forms a t-out-of-n linear secret sharing of s.

s
1

s1

2

s2

n

sn

...
degree (t − 1)

Signing and Aggregation
▶ Signing: Partial signature σi = (H(msg))si for message msg.
▶ Linear secret sharing property: For any set T ⊆ {1 . . . n} such

that |T | ≥ t we have constants {αT
i }i∈T such that

s =
∑

i∈T αT
i · si.

▶ Given {σi}i∈T compute σ = H(msg)s as

H(msg)s = H(msg)
∑

αT
i ·si =

∏
i∈T

(H(msg)si)αT
i =

∏
i∈T

σ
αT

i
i

