CS 171 - Cryptography

Sanjam Garg

Lecture 23

(t, n)-Threshold Secret Sharing

- A (t, n) threshold secret sharing scheme allows one to split a secret s into n pieces so that one will need at least t shares to reconstruct s.
- A dealer takes s as input and uses a sharing algorithm to split the secret s into parts $s_{1} \ldots s_{n}$ to be given parties $P_{1}, \ldots P_{n}$.

- Correctness: Any t parties can reconstruct s.
- Security: No collusion of $<t$ parties can reconstruct s.

(t, n)-Threshold Secret Sharing

A (t, n)-secret sharing scheme (Share, Reconstruct) is defined as follows.

- Share (s) : On input a secret s it outputs shares $s_{1}, \ldots s_{n}$.
- Reconstruct $\left(\left\{s_{i}\right\}_{i \in T}\right)$: Outputs s or \perp.
- Correctness: For any T such that $|T| \geq t$ and secret s we have that Reconstruct $\left(\left\{s_{i}\right\}_{i \in T}\right)=s$.
- Security: For any T such that $|T|<t$, secrets s, s^{\prime} and adversary \mathcal{A} we have that $p=p^{\prime}$ where

$$
\begin{aligned}
p & =\operatorname{Pr}\left[\mathcal{A}\left(\left\{s_{i}\right\}_{i \in T}\right)=1 \mid\left(s_{1}, \ldots s_{n}\right) \leftarrow \operatorname{Share}(s)\right], \\
p^{\prime} & =\operatorname{Pr}\left[\mathcal{A}\left(\left\{s_{i}^{\prime}\right\}_{i \in T}\right)=1 \mid\left(s_{1}^{\prime}, \ldots s_{n}^{\prime}\right) \leftarrow \operatorname{Share}\left(s^{\prime}\right)\right] .
\end{aligned}
$$

$(2,2)$ - Threshold Secret Sharing

- Let $s \in\{0,1\}^{m}$. How do we (2,2)-secret share s ?
- Share (s) : Sample $r \leftarrow\{0,1\}^{m}$ and output $s_{1}=r$ and $s_{2}=s \oplus r$.
- Reconstruct $\left(s_{1}, s_{2}\right)$: Outputs $s_{1} \oplus s_{2}$.
- Correctness: By constrcution, $s=s_{1} \oplus s_{2}$.
- Security: For any s, each individual s_{1} or s_{2} is uniformaly random. Thus, $p=p^{\prime}=q$ where:

$$
q=\operatorname{Pr}\left[\mathcal{A}(r)=1 \mid r \leftarrow\{0,1\}^{m}\right] .
$$

- Let $s \in\{0,1\}^{m}$. How do we (n, n)-secret share s ?
- Share(s): Sample $r_{1} \ldots r_{n-1} \leftarrow\{0,1\}^{m}$ and output $s_{1}=r_{1}$, $s_{2}=r_{2} \ldots s_{n-1}=r_{n-1}$ and $s_{n}=s \oplus_{i=1}^{n-1} r_{i}$.
- Reconstruct $\left(s_{1}, s_{2} \ldots s_{n}\right)$: Outputs $\oplus_{i=1}^{m} s_{i}$.
- Correctness: By constrcution, $s=\oplus_{i=1}^{m} s_{i}$.
- Security: For any s, T such that $|T|<n,\left\{s_{i}\right\}_{i \in T}$ is uniformaly random. Thus, $p=p^{\prime}=q$ where:

$$
q=\operatorname{Pr}\left[\mathcal{A}\left(\left\{r_{i}\right\}\right)=1 \mid r_{1} \ldots r_{|T|} \leftarrow\{0,1\}^{m}\right] .
$$

$(3,3)$ - Threshold Secret Sharing

- Let $s \in\{0,1\}^{m}$. How do we (3,3)-secret share s ?
- Share(s) : Sample $r_{1}, r_{2} \leftarrow\{0,1\}^{m}$ and output
$s_{1}=r_{1}, s_{2}=r_{2}$ and $s_{3}=s \oplus r_{1} \oplus r_{2}$.
- Reconstruct $\left(s_{1}, s_{2}, s_{3}\right)$: Outputs $s_{1} \oplus s_{2} \oplus s_{3}$.
- Correctness: By construction, $s=s_{1} \oplus s_{2} \oplus s_{3}$.
- Security: For any s, s_{i}, s_{j} for any $i, j \in\{1,2,3\}$ are uniformaly random. Thus, $p=p^{\prime}=q$ where:

$$
q=\operatorname{Pr}\left[\mathcal{A}\left(r_{1}, r_{2}\right)=1 \mid r_{1}, r_{2} \leftarrow\{0,1\}^{m}\right] .
$$

- Let $s \in\{0,1\}^{m}$. How do we (2,3)-secret share s ?
- Share (s) : Sample $r_{1}, r_{2} \leftarrow\{0,1\}^{m}$. Set $r_{3}=s \oplus r_{1} \oplus r_{2}$ and output $s_{1}=\left(r_{1}, r_{2}\right), s_{2}=\left(r_{2}, r_{3}\right)$ and $s_{3}=\left(r_{3}, r_{1}\right)$.
- Reconstruct $\left(s_{i}, s_{j}\right)$: Outputs $r_{1} \oplus r_{2} \oplus r_{3}$ where r_{1}, r_{2}, r_{3} can be recovered from s_{i}, s_{j}.
- Correctness: By construction, $s=r_{1} \oplus r_{2} \oplus r_{3}$.
- Security: For any s, s_{i} for any $i \in\{1,2,3\}$ is uniformaly random. Thus, $p=p^{\prime}=q$ where:

$$
q=\operatorname{Pr}\left[\mathcal{A}\left(r_{1}, r_{2}\right)=1 \mid r_{1}, r_{2} \leftarrow\{0,1\}^{m}\right] .
$$

(2, n) - Threshold Secret Sharing

- Let $s \in\{0,1\}^{m}$. How do we $(2, n)$-secret share s (assume $n=2^{k}$)?
- Share(s): Sample $r_{1}, \ldots r_{k} \leftarrow\{0,1\}^{m}$. For each $i=i_{1} \ldots i_{k}$ and $j=1 \ldots k$ generate

$$
s_{i, j}=r_{j}
$$

if $i_{j}=0$ and as

$$
s_{i, j}=r_{j} \oplus s
$$

if $i_{j}=1$. Output $s_{i}=\left(s_{i, 1} \ldots s_{i, k}\right)$

- Reconstruct $\left(s_{i}=\left(s_{i, 1} \ldots s_{i, k}\right), s_{i^{\prime}}=\left(s_{i^{\prime}, 1} \ldots s_{i^{\prime}, k}\right)\right)$: Outputs $s_{i, j} \oplus s_{i^{\prime}, j}$ for a j such that $i_{j} \neq i_{j}^{\prime}$.
- Correctness: This can be checked by construction.
- Security: For any s, s_{i} is uniformaly random vector of k strings. Thus, $p=p^{\prime}=q$ where:

$$
q=\operatorname{Pr}\left[\mathcal{A}\left(r_{1}, \ldots r_{k}\right)=1 \mid r_{1}, \ldots r_{k} \leftarrow\{0,1\}^{m}\right] .
$$

Can we build (t, n)-secret sharing for any t, n such that $t \leq n$?

Yes! Shamir's Secret Sharing Scheme.

Shamir's Secret Sharing: Background

- We consider a polynomials $p(x) \in \mathbb{Z}_{q}[x]$ where q is a prime.
- $p(x)$ is denoted as $a_{0}+a_{1} x \ldots a_{t} x^{t} \bmod q$. If $a_{t} \neq 0$ then $p(x)$ has degree t.
- $p(x)=p^{\prime}(x)$ if they have the same degree and agree on all coefficients.

Theorem: Any two distinct degree- t polynomials agree on at most t points.

- Proof: Suppose that $p(x) \neq p^{\prime}(x)$ and $p\left(z_{i}\right)=p^{\prime}\left(z_{i}\right)$ for $i \in\{1 \ldots t+1\}$.
- Let $q(x)=p(x)-p^{\prime}(x)$. Then we have that $q(x)$ is degree t and $q(x)=0$ for all $x \in\left\{z_{1} \ldots z_{t+1}\right\}$.
- However, $q(x)$ is of degree $\leq t$ and has $t+1$ root.

Contradiction!

Shamir's Secret Sharing

Key idea:

- If we have t points of a polynomial of degree $t-1$, we can reconstruct the polynomial. Moreover, the polynomial is unique.

Theorem: Given t distinct input/output points $\left(x_{1}, y_{1}\right) \ldots\left(x_{t}, y_{t}\right)$, we can find in poly time the unique degree- $(t-1)$ polynomial $p(x)$, where $p\left(x_{i}\right)=y_{i}$ for $i \in\{1 \ldots t\}$.

(t, n)-Shamir's Secret Sharing

Main Idea: To share $s \in \mathbb{Z}_{q}$: choose a random degree $t-1$ polynomial $p(x)$ such that $p(0)=s$. Give out the shares $(p(1), \ldots, p(n))$.

- Given t shares, we can reconstruct $p(x)$, and can then recover $p(0)$.

Sharing:

- Given a secret $s \in \mathbb{Z}_{q}$, choose $p(x)=s+a_{1} x+\ldots a_{t-1} x^{t-1}$, where a_{i} 's are chosen randomly in \mathbb{Z}_{q}. Give out the shares $(p(1), \ldots, p(n))$.

Reconstruct:

- Given t values $\left(i_{1}, p\left(i_{1}\right), \ldots,\left(t, p\left(i_{t}\right)\right)\right.$, reconstruct p and output $p(0)$.

Practice Problem

- Given encryption schemes $\Pi_{1} \ldots \Pi_{n}$ (where $\left.\Pi_{i}=\left(G e n_{i}, E n c_{i}, D e c_{i}\right)\right)$ such that at least t of them are CPA-secure. Construct an encryption scheme that is CPA-secure.
(t, n)-Threshold Signature [Desmedt'87, Desmedt-Frankel'89]

- A succinct (constant-size) public/verification key vk.
- Aggregated signatures σ are succinct (constant-size).
- Widely used in blockchain applications.

BLS Signature [Boneh-Lynn-Shacham'01]
$-\mathrm{s} \leftarrow \mathbb{Z}_{q}, \mathrm{vk}=g^{\mathrm{s}}$.

- Signature is $\sigma=\mathrm{H}(\mathrm{msg})^{\mathrm{s}}$.
- Verify signature: $e(\mathrm{H}(\mathrm{msg}), \mathrm{vk}) \stackrel{?}{=} e(\sigma, g)$

BLS Multisignature: n-out-of- n threshold signature

- Each party picks $\mathrm{s}_{i} \leftarrow \mathbb{Z}_{q}$, vk ${ }_{i}=g^{\mathrm{s}_{i}}$
- Partial signature $\sigma_{i}=\mathrm{H}(\mathrm{msg})^{s_{i}}$

$$
\left\{\begin{array}{c}
e\left(\mathrm{H}(\mathrm{msg}), \mathbf{v k}_{1}\right) \stackrel{?}{=} e\left(\sigma_{1}, g\right) \\
\vdots \\
e\left(\mathrm{H}(\mathrm{msg}), \mathrm{vk}_{n}\right) \stackrel{?}{=} e\left(\sigma_{n}, g\right)
\end{array}\right.
$$

- Verification key $\mathrm{aVK}=\prod_{i} \mathrm{vk}_{i}$
- Aggregated Signature $\sigma=\prod_{i} \sigma_{i}$
- Verify signature: $e(\mathrm{H}(\mathrm{msg}), \mathrm{aVK}) \stackrel{?}{=} e(\sigma, g)$

BLS t-out-of- n threshold signature

- Generate $\mathrm{s} \leftarrow \mathbb{Z}_{q}$, vk $=g^{\mathrm{s}}$.
- vk is published, $i^{\text {th }}$ party receives s_{i}.
- $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}$ forms a t-out-of- n linear secret sharing of s .

Signing and Aggregation

- Signing: Partial signature $\sigma_{i}=(\mathrm{H}(\mathrm{msg}))^{\mathbf{s}_{i}}$ for message msg.
- Linear secret sharing property: For any set $T \subseteq\{1 \ldots n\}$ such that $|T| \geq t$ we have constants $\left\{\alpha_{i}^{T}\right\}_{i \in T}$ such that $\mathrm{s}=\sum_{i \in T} \alpha_{i}^{T} \cdot \mathrm{~s}_{i}$.
- Given $\left\{\sigma_{i}\right\}_{i \in T}$ compute $\sigma=\mathrm{H}(\mathrm{msg})^{\mathrm{s}}$ as

$$
\mathrm{H}(\mathrm{msg})^{\mathrm{s}}=\mathrm{H}(\mathrm{msg})^{\sum \alpha_{i}^{T} \cdot \mathrm{~s}_{i}}=\prod_{i \in T}\left(\mathrm{H}(\mathrm{msg})^{\mathrm{s}_{i}}\right)^{\alpha_{i}^{T}}=\prod_{i \in T} \sigma_{i}^{\alpha_{i}^{T}}
$$

