CS 171 - Cryptography

Sanjam Garg

Lecture 23

(t, n)-Threshold Secret Sharing

- A (t, n) threshold secret sharing scheme allows one to split a secret s into n pieces so that one will need at least t shares to reconstruct s.
- ► A dealer takes s as input and uses a sharing algorithm to split the secret s into parts s₁...s_n to be given parties P₁,...P_n.

- **Correctness**: Any *t* parties can reconstruct *s*.
- **Security**: No collusion of < t parties can reconstruct s.

(t, n)-Threshold Secret Sharing

A (t, n)-secret sharing scheme (Share, Reconstruct) is defined as follows.

- Share(s): On input a secret s it outputs shares $s_1, \ldots s_n$.
- ▶ Reconstruct($\{s_i\}_{i \in T}$): Outputs s or \bot .
- ▶ Correctness: For any T such that $|T| \ge t$ and secret s we have that Reconstruct $({s_i}_{i \in T}) = s$.
- Security: For any T such that |T| < t, secrets s,s' and adversary ${\mathcal A}$ we have that p=p' where

 $p = Pr[\mathcal{A}(\{s_i\}_{i \in T}) = 1 \mid (s_1, \dots s_n) \leftarrow \mathsf{Share}(s)],$ $p' = Pr[\mathcal{A}(\{s'_i\}_{i \in T}) = 1 \mid (s'_1, \dots s'_n) \leftarrow \mathsf{Share}(s')].$

(2,2) – Threshold Secret Sharing

- Let $s \in \{0, 1\}^m$. How do we (2, 2)-secret share s?
- Share(s): Sample $r \leftarrow \{0,1\}^m$ and output $s_1 = r$ and $s_2 = s \oplus r$.
- Reconstruct (s_1, s_2) : Outputs $s_1 \oplus s_2$.
- Correctness: By construction, $s = s_1 \oplus s_2$.
- Security: For any s, each individual s_1 or s_2 is uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r) = 1 \mid r \leftarrow \{0, 1\}^m].$$

(n, n) – Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (n,n)-secret share s?
- Share(s): Sample $r_1 \ldots r_{n-1} \leftarrow \{0,1\}^m$ and output $s_1 = r_1$, $s_2 = r_2 \ldots s_{n-1} = r_{n-1}$ and $s_n = s \bigoplus_{i=1}^{n-1} r_i$.
- Reconstruct $(s_1, s_2 \dots s_n)$: Outputs $\bigoplus_{i=1}^{m} s_i$.
- Correctness: By construction, $s = \bigoplus_{i=1}^{m} s_i$.
- Security: For any s, T such that |T| < n, $\{s_i\}_{i \in T}$ is uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(\{r_i\}) = 1 \mid r_1 \dots r_{|T|} \leftarrow \{0, 1\}^m]$$

(3,3)-Threshold Secret Sharing

- Let $s \in \{0, 1\}^m$. How do we (3, 3)-secret share s?
- Share(s): Sample $r_1, r_2 \leftarrow \{0, 1\}^m$ and output $s_1 = r_1, s_2 = r_2$ and $s_3 = s \oplus r_1 \oplus r_2$.
- Reconstruct (s_1, s_2, s_3) : Outputs $s_1 \oplus s_2 \oplus s_3$.
- Correctness: By construction, $s = s_1 \oplus s_2 \oplus s_3$.
- Security: For any s, s_i , s_j for any $i, j \in \{1, 2, 3\}$ are uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r_1, r_2) = 1 \mid r_1, r_2 \leftarrow \{0, 1\}^m].$$

(2,3)-Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,3)-secret share s?
- ▶ Share(s) : Sample $r_1, r_2 \leftarrow \{0, 1\}^m$. Set $r_3 = s \oplus r_1 \oplus r_2$ and output $s_1 = (r_1, r_2), s_2 = (r_2, r_3)$ and $s_3 = (r_3, r_1)$.
- ▶ Reconstruct (s_i, s_j) : Outputs $r_1 \oplus r_2 \oplus r_3$ where r_1, r_2, r_3 can be recovered from s_i, s_j .
- Correctness: By construction, $s = r_1 \oplus r_2 \oplus r_3$.
- Security: For any s, s_i for any $i \in \{1, 2, 3\}$ is uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r_1, r_2) = 1 \mid r_1, r_2 \leftarrow \{0, 1\}^m].$$

(2, n)-Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,n)-secret share s (assume $n = 2^k$)?
- ▶ Share(s) : Sample $r_1, \ldots r_k \leftarrow \{0, 1\}^m$. For each $i = i_1 \ldots i_k$ and $j = 1 \ldots k$ generate

$$s_{i,j} = r_j$$

if $i_j = 0$ and as

$$s_{i,j} = r_j \oplus s$$

if $i_j = 1$. Output $s_i = (s_{i,1} \dots s_{i,k})$

- ▶ Reconstruct($s_i = (s_{i,1} \dots s_{i,k}), s_{i'} = (s_{i',1} \dots s_{i',k})$): Outputs $s_{i,j} \oplus s_{i',j}$ for a j such that $i_j \neq i'_j$.
- Correctness: This can be checked by construction.
- Security: For any s, s_i is uniformaly random vector of k strings. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r_1, \dots r_k) = 1 \mid r_1, \dots r_k \leftarrow \{0, 1\}^m].$$

Can we build (t, n)-secret sharing for any t, n such that $t \le n$?

Yes! Shamir's Secret Sharing Scheme.

Shamir's Secret Sharing: Background

- ▶ We consider a polynomials $p(x) \in \mathbb{Z}_q[x]$ where q is a prime.
- ▶ p(x) is denoted as $a_0 + a_1 x \dots a_t x^t \mod q$. If $a_t \neq 0$ then p(x) has degree t.
- ▶ p(x) = p'(x) if they have the same degree and agree on all coefficients.

Theorem: Any two distinct degree-t polynomials agree on at most t points.

- Proof: Suppose that $p(x) \neq p'(x)$ and $p(z_i) = p'(z_i)$ for $i \in \{1 \dots t + 1\}$.
- Let q(x) = p(x) p'(x). Then we have that q(x) is degree tand q(x) = 0 for all $x \in \{z_1 \dots z_{t+1}\}$.
- ▶ However, q(x) is of degree $\leq t$ and has t + 1 root. Contradiction!

Shamir's Secret Sharing

Key idea:

► If we have t points of a polynomial of degree t − 1, we can reconstruct the polynomial. Moreover, the polynomial is unique.

Theorem: Given t distinct input/output points $(x_1, y_1) \dots (x_t, y_t)$, we can find in poly time the unique degree-(t-1) polynomial p(x), where $p(x_i) = y_i$ for $i \in \{1 \dots t\}$.

(t, n)-Shamir's Secret Sharing

Main Idea: To share $s \in \mathbb{Z}_q$: choose a random degree t-1 polynomial p(x) such that p(0) = s. Give out the shares $(p(1), \ldots, p(n))$.

• Given t shares, we can reconstruct p(x), and can then recover p(0).

Sharing:

• Given a secret $s \in \mathbb{Z}_q$, choose $p(x) = s + a_1 x + \ldots a_{t-1} x^{t-1}$, where a_i 's are chosen randomly in \mathbb{Z}_q . Give out the shares $(p(1), \ldots, p(n))$.

Reconstruct:

• Given t values $(i_1, p(i_1), \ldots, (t, p(i_t)))$, reconstruct p and output p(0).

Practice Problem

▶ Given encryption schemes Π₁...Π_n (where Π_i = (Gen_i, Enc_i, Dec_i)) such that at least t of them are CPA-secure. Construct an encryption scheme that is CPA-secure.

(t,n)-Threshold Signature [Desmedt'87, Desmedt-Frankel'89]

- ► A succinct (constant-size) public/verification key vk.
- Aggregated signatures σ are succinct (constant-size).
- ► Widely used in blockchain applications.

BLS Signature [Boneh-Lynn-Shacham'01]

- ▶ $s \leftarrow \mathbb{Z}_q$, $vk = g^s$.
- Signature is $\sigma = H(msg)^{s}$.
- Verify signature: $e(H(msg), vk) \stackrel{?}{=} e(\sigma, g)$

BLS Multisignature: *n*-out-of-*n* threshold signature

- ► Each party picks $s_i \leftarrow \mathbb{Z}_q$, $vk_i = g^{s_i}$
- ▶ Partial signature $\sigma_i = H(msg)^{s_i}$

$$\begin{cases} e(\mathsf{H}(\mathsf{msg}),\mathsf{vk}_1) \stackrel{?}{=} e(\sigma_1,g) \\ \vdots \\ e(\mathsf{H}(\mathsf{msg}),\mathsf{vk}_n) \stackrel{?}{=} e(\sigma_n,g) \end{cases}$$

- Verification key aVK = $\prod_i vk_i$
- Aggregated Signature $\sigma = \prod_i \sigma_i$
- Verify signature: $e(H(msg), aVK) \stackrel{?}{=} e(\sigma, g)$

BLS *t*-out-of-*n* threshold signature

- Generate $s \leftarrow \mathbb{Z}_q$, $vk = g^s$.
- vk is published, i^{th} party receives s_i.
- ▶ s_1, \ldots, s_n forms a *t*-out-of-*n* linear secret sharing of s.

$$s_1$$
 s_2 s_n degree $(t-1)$

Signing and Aggregation

- ▶ Signing: Partial signature $\sigma_i = (H(msg))^{s_i}$ for message msg.
- Linear secret sharing property: For any set $T \subseteq \{1 \dots n\}$ such that $|T| \ge t$ we have constants $\{\alpha_i^T\}_{i \in T}$ such that $s = \sum_{i \in T} \alpha_i^T \cdot s_i$.
- Given $\{\sigma_i\}_{i \in T}$ compute $\sigma = H(msg)^s$ as

$$\mathsf{H}(\mathsf{msg})^{\mathsf{s}} = \mathsf{H}(\mathsf{msg})^{\sum \alpha_i^T \cdot \mathsf{s}_i} = \prod_{i \in T} \left(\mathsf{H}(\mathsf{msg})^{\mathsf{s}_i}\right)^{\alpha_i^T} = \prod_{i \in T} \sigma_i^{\alpha_i^T}$$