CS 171 - Cryptography

Sanjam Garg

Lecture 24

Take Away from this Class

Definitions

Definitions

Definitions

Plan for today

- Multiparty Secure Computation
- Review of Definitions

Multiparty Secure Computation

- ▶ Parties P_1, P_2, P_3 hold private inputs $x_1, x_2, x_3 \in \{0, 1\}^{\ell}$.
- Want to jointly compute a public circuit C: ({0,1}^ℓ)³ → {0,1} on their private inputs.
- ▶ Want to disclose only the output of the compution.
- ► Are allowed to interact (and sample random coins).

 Assume private and authenticated channels between every pair of parties.

Application

Private contact discovery

Bitcoin Wallets - Threshold Signing for ECDSA

Multiparty Secure Computation — Definition

- The adversary can be malicious or honest but curious.
- Correctness: $y = C(x_1, x_2, x_3)$.
- Security Informally: whatever A learns in the real world could be learnt in ideal world as well!
- Security: $\forall \mathcal{A}$ there exists S such that no machine can distinguish between $REAL_{\Pi,A}(x_1, x_2, x_3)$ and $IDEAL_{\mathcal{F},S}(x_1, x_2, x_3)$.

(2,3)-Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,3)-secret share s?
- ▶ Share(s) : Sample $r_1, r_2 \leftarrow \{0, 1\}^m$. Set $r_3 = s \oplus r_1 \oplus r_2$ and output $s_1 = (r_1, r_2), s_2 = (r_2, r_3)$ and $s_3 = (r_3, r_1)$.
- ▶ Reconstruct (s_i, s_j) : Outputs $r_1 \oplus r_2 \oplus r_3$ where r_1, r_2, r_3 can be recovered from s_i, s_j .

MPC Protocol — Invariant and Input Secret Sharing

- ▶ Parties want to compute circuit C with \oplus and \times gates.
- ▶ Invariant: Parties compute a (2,3) secret-sharing for each wire in the circuit.
- ▶ Input Secret Sharing: *P*₁, *P*₂, *P*₃ hold *x*₁, *x*₂, *x*₃ respectively. How do they recieve a (2, 3) secret sharing of these inputs?
- ▶ P₁ generates a (2,3)-secret sharing of its input x₁, keeps one share locally and passes the other two shares to P₂ and P₃. P₂ and P₃ do the same with their inputs.

MPC Protocol — \oplus **Gate**

- ▶ P_1, P_2, P_3 hold (r_1, r_2) , (r_2, r_3) and (r_3, r_1) such that $r_1 \oplus r_2 \oplus r_3 = \alpha$ and (s_1, s_2) , (s_2, s_3) and (s_3, s_1) such that $s_1 \oplus s_2 \oplus s_3 = \beta$. How can parties compute a (2, 3) secret sharing of $\alpha \oplus \beta$?
- Observe $\alpha \oplus \beta = (r_1 \oplus s_1) \oplus (r_2 \oplus s_2) \oplus (r_3 \oplus s_3)$. Thus, parties can set $(r_1 \oplus s_1, r_2 \oplus s_2)$, $(r_2 \oplus s_2, r_3 \oplus s_3)$ and $(r_3 \oplus s_3, r_1 \oplus s_1)$ as their (2, 3) shares of $\alpha \oplus \beta$.

MPC Protocol — \times **Gate**

- ▶ P_1, P_2, P_3 hold (r_1, r_2) , (r_2, r_3) and (r_3, r_1) such that $r_1 \oplus r_2 \oplus r_3 = \alpha$ and (s_1, s_2) , (s_2, s_3) and (s_3, s_1) such that $s_1 \oplus s_2 \oplus s_3 = \beta$. How can parties compute a (2, 3) secret sharing of $\alpha \times \beta$?
- ▶ P_1, P_2, P_3 can locally compute $t_1 = r_1 \cdot s_1 \oplus r_1 \cdot s_2 \oplus r_2 \cdot s_1$, $t_2 = r_2 \cdot s_2 \oplus r_2 \cdot s_3 \oplus r_3 \cdot s_2$ and $t_3 = r_3 \cdot s_3 \oplus r_3 \cdot s_1 \oplus r_1 \cdot s_3$ respectively.
- This is a (3,3) secret sharing. How do we go back to a (2,3) secret sharing?
- P_1 just sends its share with P_2 and so on!
- ► Also, rerandomize before sharing. P_i updates its share from t_i to t_i ⊕ u_i before sharing. Where u₁, u₂, u₃ are random shares such that u₁ ⊕ u₂ ⊕ u₃ = 0.

MPC Protocol — Output Reconstruction

- How do paties reconstruct the output given that they hold a (2,3)-secret sharing of the output wire?
- **•** Each party publishes its shares and output can reconstructed.

Review

CPA-Security

EAV Security

$PubK_{A,\Pi}^{eav}(n)$		Encryption scheme $\Pi =$
1.	$(pk, sk) \leftarrow G(1^n)$ and give pk to A.	(Gen, Enc, Dec) is indistinguishable in the presence of an
2.	A outputs $m_0, m_1 \in \{0,1\}^*, m_0 = m_1 .$	eavesdropper, or is EAV- secure if
3.	$b \leftarrow \{0,1\}, c \leftarrow$	\forall PPT <i>A</i> it holds that:
4.	<i>Enc</i> (<i>pk</i> , <i>m_b</i>) <i>c</i> is given to A and it	$\Pr[\operatorname{Pub}K_{A,\Pi}^{eav} = 1] \le \frac{1}{2}$
	outputs b'	+ negl(n)

5. Output 1 if b = b' and 0 otherwise

1- $\frac{1}{2}$ + negl(n)

Pseudorandom Function (PRF)

Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a PRF if for all PPT distinguishers D, there is a negligible function $negl(\cdot) \text{ such that:}$ $|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n)$

where $k \leftarrow U_n$ and $f \leftarrow Func_n$.

One-Way Functions: Formally

- A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is a one-way function if:
- (easy to compute) There exists a polynomial-time algorithm M_f computing f; i.e., for all x, $M_f(x) =$ f(x).
- (hard to invert) For all PPT A, there is a negligible function *negl* such that

 $\Pr_{x \leftarrow \{0,1\}^n} \left[A(1^n, f(x)) \in f^{-1}(f(x)) \right] \le negl(n)$

Pseudorandom Generators

• $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$, where $\ell(n) > n$

• G is pseudorandom generator if $\forall PPT$ A we have

 $\exists negl(\cdot) \text{ such that,} \\ |\Pr_{x \leftarrow U_{\ell(n)}} [A(x) = 1] - \Pr_{s \leftarrow U_n} [A(G(s)) = 1]| \le negl(n)$

Syntax

- *Gen*(1^{*n*}): Outputs public key and secret key pair (*pk*, *sk*).
- $Sign_{sk}(m)$: Outputs a signature σ on the message m.
- $Vrfy_{pk}(m, \sigma)$: Outputs 0/1.

Correctness: For all n, except for negligible choices of (pk, sk), it holds that for all m, $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$.

Unforgeability/Security of Digital Signature

Identity-Based Encryption (IBE) [Shamir84]

Four Algorithms: (S, K, E, D)

$S(1^{\lambda})$	$\rightarrow (pp, msk)$	<i>pp</i> are public parameters
secret-key		more is the master
K(msk,ID)	$\rightarrow sk_{ID}$	sk_{ID} secret key for ID
E(pp, ID, m)	$\rightarrow c$	encrypt using pp and ID
D(<mark>sk_{ID},c)</mark>	$\rightarrow m$	decrypt c using sk _{ID}

Security of IBE [BF01]

Zero-Knowledge Proof System

- Syntax: Two algorithms, $P(1^n, x, w)$ and $V(1^n, x)$.
- ► Completeness: Honest prover convinces an honest verifier with *overwhelming* probability. $\Pr[V \text{ outputs } 1 \text{ in the interaction } P(1^n, x, w) \leftrightarrow V(1^n, x)] = 1 - \operatorname{neg}(n)$
- Soundness: A PPT cheating prover P^* cannot make a Verifier accept a false statement. For all PPT P^* , x such that $\forall w, C(x, w) = 0$ then we have that

 $\Pr[V \text{ outputs } 1 \text{ in the interaction } P^*(1^n, x) \leftrightarrow V(1^n, x)] = \operatorname{neg}(n)$

▶ Zero-Knowledge: The proof doesn't leak any information about the witness w. \exists a PPT simulator S that for all PPT V^*, x, w such that C(x, w) = 1, we have that \forall PPT D:

$$\left| \mathsf{Pr}[D(V^* \text{'s view in } P(1^n, x, \textbf{w}) \leftrightarrow V^*(1^n, x)) = 1] - \mathsf{Pr}[D(\mathcal{S}^{V^*}(1^n, x)) = 1] \right| \leq \mathsf{neg}(n)$$

3/13