
CS 171 - Cryptography

Sanjam Garg

Lecture 24

Take Away from this Class

Definitions

Definitions

Definitions

Plan for today

▶ Multiparty Secure Computation
▶ Review of Definitions

Multiparty Secure Computation

▶ Parties P1, P2, P3 hold private inputs x1, x2, x3 ∈ {0, 1}ℓ.
▶ Want to jointly compute a public circuit

C : ({0, 1}ℓ)3 → {0, 1} on their private inputs.
▶ Want to disclose only the output of the compuation.
▶ Are allowed to interact (and sample random coins).

BP

x1 x2

x3

▶ Assume private and authenticated channels between every pair
of parties.

Application

▶ Private contact discovery
▶ Bitcoin Wallets - Threshold Signing for ECDSA

Multiparty Secure Computation — Definition

▶ The adversary can be malicious or honest but curious.
▶ Correctness: y = C(x1, x2, x3).
▶ Security Informally: whatever A learns in the real world could be learnt in ideal

world as well!
▶ Security: ∀ A there exists S such that no machine can distinguish between

REALΠ,A(x1, x2, x3) and IDEALF,S(x1, x2, x3).

BPBP

x1 x2

x3

ΠC

BP

x1, y x2, y

x3, y

Real World

BP

x1, y x2, y

A

x3, y

Ideal World

BP

x1 x2

S

x3

Fx1 x2

x3

y y

y

Ideal World

BP

x1, y x2, y

S

x3, y

(2, 3)−Threshold Secret Sharing

▶ Let s ∈ {0, 1}m. How do we (2, 3)-secret share s?
▶ Share(s) : Sample r1, r2 ← {0, 1}m. Set r3 = s⊕ r1 ⊕ r2 and

output s1 = (r1, r2), s2 = (r2, r3) and s3 = (r3, r1).
▶ Reconstruct(si, sj): Outputs r1 ⊕ r2 ⊕ r3 where r1, r2, r3 can

be recovered from si, sj .

MPC Protocol — Invariant and Input Secret Sharing

▶ Parties want to compute circuit C with ⊕ and × gates.
▶ Invariant: Parties compute a (2, 3) secret-sharing for each wire

in the circuit.
▶ Input Secret Sharing: P1, P2, P3 hold x1, x2, x3 respectively.

How do they recieve a (2, 3) secret sharing of these inputs?
▶ P1 generates a (2, 3)-secret sharing of its input x1, keeps one

share locally and passes the other two shares to P2 and P3. P2
and P3 do the same with their inputs.

MPC Protocol — ⊕ Gate

▶ P1, P2, P3 hold (r1, r2), (r2, r3) and (r3, r1) such that
r1 ⊕ r2 ⊕ r3 = α and (s1, s2), (s2, s3) and (s3, s1) such that
s1 ⊕ s2 ⊕ s3 = β. How can parties compute a (2, 3) secret
sharing of α⊕ β?

▶ Observe α⊕ β = (r1 ⊕ s1)⊕ (r2 ⊕ s2)⊕ (r3 ⊕ s3). Thus,
parties can set (r1 ⊕ s1, r2 ⊕ s2), (r2 ⊕ s2, r3 ⊕ s3) and
(r3 ⊕ s3, r1 ⊕ s1) as their (2, 3) shares of α⊕ β.

MPC Protocol — × Gate
▶ P1, P2, P3 hold (r1, r2), (r2, r3) and (r3, r1) such that

r1 ⊕ r2 ⊕ r3 = α and (s1, s2), (s2, s3) and (s3, s1) such that
s1 ⊕ s2 ⊕ s3 = β. How can parties compute a (2, 3) secret
sharing of α× β?

▶ α× β = (r1 ⊕ r2 ⊕ r3) · (s1 ⊕ s2 ⊕ s3)
= r1 · s1 ⊕ r1 · s2 ⊕ r2 · s1
⊕ r2 · s2 ⊕ r2 · s3 ⊕ r3 · s2
⊕ r3 · s3 ⊕ r3 · s1 ⊕ r1 · s3.

▶ P1, P2, P3 can locally compute t1 = r1 · s1 ⊕ r1 · s2 ⊕ r2 · s1,
t2 = r2 · s2 ⊕ r2 · s3 ⊕ r3 · s2 and t3 = r3 · s3 ⊕ r3 · s1 ⊕ r1 · s3
respectively.

▶ This is a (3, 3) secret sharing. How do we go back to a (2, 3)
secret sharing?

▶ P1 just sends its share with P2 and so on!
▶ Also, rerandomize before sharing. Pi updates its share from ti

to ti ⊕ ui before sharing. Where u1, u2, u3 are random shares
such that u1 ⊕ u2 ⊕ u3 = 0.

MPC Protocol — Output Reconstruction

▶ How do paties reconstruct the output given that they hold a
(2, 3)−secret sharing of the output wire?

▶ Each party publishes its shares and output can reconstructed.

Review

Perfect Security

PrivKA,Π
eav

1. A outputs 𝑚0 , 𝑚1 ∈
M.

2. b  {0,1}, k 
Gen(), 𝑐∗ 
𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐∗ is given to A

4. A output 𝑏’

5. Output 1 if 𝑏 =
 𝑏’ and 0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) with
message space M

is perfectly
indistinguishable if

∀ 𝐴 it holds that:

Pr PrivKA,Π
eav = 1 =

1

2

Challenge
ciphertext

A can always succeed with
probability ½. How?

eav is for
Eavesdropper

Drawback: Large Keys

CPA-Security

PrivKA,Π
CPA(𝑛)

1. Sample k  Gen(1𝑛),
𝐴

𝐸𝑛𝑐𝑘(⋅)
 outputs

𝑚0, 𝑚1 ∈
0,1 ∗, |𝑚0| = |𝑚1|.

2. b  {0,1}, 𝑐∗ 
𝐸𝑛𝑐𝑘(𝑚𝑏

)

3. 𝑐∗ is given to 𝐴
𝐸𝑛𝑐𝑘(⋅)

4. 𝐴
𝐸𝑛𝑐𝑘(⋅)

 output 𝑏’

5. Output 1 if 𝑏 = 𝑏’ and
0 otherwise

Encryption scheme Π =
 (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) has
indistinguishable
encryptions under chosen-
plaintext attack, or is CPA-
secure if
∀ PPT 𝐴 it holds that:

Pr PrivKA,Π
CPA = 1 ≤

1

2
 + negl(n)

Only PPT attackers and
allowed some failure

probability.

EAV Security

PubKA,Π
eav()

1. ,  ←   and
give pk to A.

2. A outputs0, ∈
, ∗, |0| = ||.

3. b {0,1}, 
(,)

4.  is given to A and it
outputs b’

5. Output 1 if  = ’ and
0 otherwise

Encryption scheme =
(,,) is
indistinguishable in the
presence of an
eavesdropper, or is EAV-
secure if

∀ PPT  it holds that:

Pr PubKA,Π
eav =  ≤




+ negl(n)

Pseudorandom Function (PRF)

Let 𝐹: 0,1 ∗ × 0,1 ∗ → 0,1 ∗ be an efficient,
length-preserving, keyed function. F is a PRF if for all
PPT distinguishers D, there is a negligible function
𝑛𝑒𝑔𝑙(⋅) such that:

Pr 𝐷𝐹𝑘 ⋅ 1𝑛 = 1 − Pr 𝐷𝑓 ⋅ 1𝑛 = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)

where 𝑘 ← 𝑈𝑛 and 𝑓 ← 𝐹𝑢𝑛𝑐𝑛.

One-Way Functions: Formally

• A function : , ∗ → , ∗ is a one-way
function if:

• (easy to compute) There exists a polynomial-time
algorithm  computing ; i.e., for all , x =
().
• (hard to invert) For all PPT A, there is a negligible
function  such that

Pr
← 0, 

  ,   ∈ −   ≤ ()

Pseudorandom Generators

seed G expanded output

• , where

• is pseudorandom generator if A we have
such that,

ℓ(೙) ೙

Syntax

• 𝐺𝑒𝑛 1𝑛 : Outputs public key and secret key pair
𝑝𝑘, 𝑠𝑘 .

• 𝑆𝑖𝑔𝑛𝑠𝑘 𝑚 : Outputs a signature 𝜎 on the message
𝑚.

• 𝑉𝑟𝑓𝑦𝑝𝑘 𝑚, 𝜎 : Outputs 0/1.

Correctness: For all 𝑛, except for negligible choices of 𝑝𝑘, 𝑠𝑘 , it holds

that for all 𝑚, 𝑉𝑟𝑓𝑦𝑝𝑘 𝑚, 𝑆𝑖𝑔𝑛𝑠𝑘 𝑚 = 1.

Unforgeability/Security of Digital
Signature
ForgeA,Π(1𝑛)

1. Sample (pk,sk) 
Gen(1𝑛).

2. Let (𝑚∗, 𝜎∗) be the
output of
𝐴

𝑆𝑖𝑔𝑛𝑠𝑘 ⋅
(𝑝𝑘). Let 𝑀

be the list of queries A
makes.

3. Output 1 if
𝑉𝑟𝑓𝑦𝑝𝑘 𝑚∗, 𝜎∗ = 1 ∧
𝑚∗ ∉ 𝑀 and 0
otherwise.

Π = (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑟𝑓𝑦) is
existentially unforgeable
under adaptive chosen
attack if
∀ PPT 𝐴 it holds that:

Pr ForgeA,Π = 1 ≤
 negl(n)

Identity-Based Encryption (IBE)
[Shamir84]

Four Algorithms: (,,,)

  → ,  are public parameters

 is the master
secret-key

 ,  →   secret key for 

 , , →  encrypt using  and 

 ,  →  decrypt  using 

Security of IBE [BF01]

Challenger Adversary


  → ,

 = (, )

∗

 ← {,}
 = (, ∗, )



 = (, )
 ≠ ∗

 ∈ {,}|Pr  =  − /2| ≈ ()

Zero-Knowledge Proof System

Prover Verifier

xx ,w
C(x ,w) = 1

Verifier outputs 0/1.
Prover wants
to keep w
hidden

▶ Syntax: Two algorithms, P(1n, x ,w) and V (1n, x).
▶ Completeness: Honest prover convinces an honest verifier with overwhelming probability.

Pr[V outputs 1 in the interaction P(1n, x ,w) ↔ V (1n, x)] = 1− neg(n)

▶ Soundness: A PPT cheating prover P∗ cannot make a Verifier accept a false statement.
For all PPT P∗, x such that ∀w ,C (x ,w) = 0then we have that

Pr[V outputs 1 in the interaction P∗(1n, x) ↔ V (1n, x)] = neg(n)

▶ Zero-Knowledge: The proof doesn’t leak any information about the witness w . ∃ a PPT
simulator S that for all PPT V ∗, x ,w such that C (x ,w) = 1, we have that ∀ PPT D:
∣∣∣Pr[D(V ∗’s view in P(1n, x ,w) ↔ V ∗(1n, x)) = 1]− Pr[D(SV ∗

(1n, x)) = 1]
∣∣∣ ≤ neg(n)

3 / 13

