CS171: Cryptography

Lecture 3

Sanjam Garg

https://eecs171.com/

CS 171	Q Search CS 171 Piazza Gradescope Course Calendar Course Capture Email
About Grading Home Logistics Schedule Staff	Welcome to CS 171! Week1 Jan 17: LECTURE Introduction and overview. Private-key 1.1-1.3
Support	cryptography. The syntax of private-key encryption. The shift cipher.
	Week 2
	Jan 22: LECTURE Elementary cryptanalysis and frequency 1.4 and 2.1-2.3 analysis. Principles of Modern Cryptography. Discussion Discussion 1
	Jan 23: HOMEWORK Homework 1 LaTeX

Email for Course Staff: cs171@berkeley.edu

Defining Secure Encryption: Formally

Definition 1: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is *perfectly secret* if for every probability distribution over \mathcal{M} , every message $m \in$ \mathcal{M} , and every ciphertext c for which $\Pr[C = c] > 0$: $\Pr[M = m | C = c] = \Pr[M = m]$

Or, if for every two messages , $m, m' \in \mathcal{M}$, and every ciphertext c (in ciphertext space): $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$,

Definition 3 (Game Style)

 $\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}$

- 1. A outputs $m_0, m_1 \in \mathcal{M}$.
- 2. $b \leftarrow \{0,1\}, k \leftarrow$ Gen(), $c \leftarrow Enc_k(m_b)$
- *3. c* is given to A
- 4. _oA output *b*'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme Π (*Gen*, *Enc*, *Dec*) with message space \mathcal{M} is perfectly indistinguishable if $\forall A$ it holds that: $\Pr[\operatorname{Priv} K_{A,\Pi}^{eav} = 1] = \frac{1}{2}$ A can always succeed with

probability ½. How?

Challenge ciphertext

Lemma (Prove on your own): Encryption scheme Π is *perfectly secret* if and only if it is *perfectly indistinguishable*.

The One-Time Pad

Fix an integer ℓ , then let $\mathcal{M}, \mathcal{K}, C = \{0,1\}^{\ell}$

- Gen: output a uniform value from \mathcal{K}
- $Enc_k(m)$: where $m \in \{0,1\}^{\ell}$, output $c := k \oplus m$
- $Dec_k(c)$: output $m := k \oplus c$
- Correctness: $Dec_k(Enc_k(m)) = k \oplus k \oplus m = m$
- Security: $\forall m, c, \Pr[Enc_K(m) = c] = 2^{-\ell}$. Or, $\forall m, m', c, \Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

One-Time Pad: Good and Bad

- One-Time Pad achieves perfect security
 - Been used in the past

- Not used anymore, why not?
 - 1. The key is as long as the message
 - 2. Can't reuse the key
 - 3. Broken under known-plaintext attack

Can we make $|\mathcal{M}| > |\mathcal{K}|$?

Optimality of One-Time Pad

Theorem: If $\Pi = (Gen, Enc, Dec)$ is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{M}| \leq |\mathcal{K}|$.

- 1. Assume $|\mathcal{K}| < |\mathcal{M}|$ (will show that Π cannot be perfectly secret)
- 2. $\mathcal{M}(c) = \{m \mid m = Dec_k(c) \text{ for some } k \in \mathcal{K}\}$
- 3. $|\mathcal{M}(c)| \leq \mathcal{K}$
- 4. $\exists m' \in \mathcal{M}, m' \notin \mathcal{M}(c)$
- 5. $\Pr[M = m' | C = c] = 0 \neq \Pr[M = m']$

Computational Security

- Relaxation of perfect security
 - Security only against efficient adversaries
 - Security can fail with some very small probability
- Two approaches
 - Concrete security
 - Asymptotic security

Concrete Security

- A scheme is (t, ϵ) -secure if for any adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ .
- Example: Consider an encryption scheme that is $(2^{128}, 2^{-60})$ —secure.
- 2⁸⁰ is the computation that can be performed by super-computers in one year or so.
- 2^{-60} is the probability that an event happens roughly once every 100 billion years

What's wrong?

- Concrete security is essential in choosing scheme parameters in practice.
- However, it doesn't yield clean theory
 - Depends on the computational model
 - Need to change schemes as (t, ϵ) need to be updated
- Need schemes that allow tuning (t, ϵ) as desired

Asymptotic Security

- Introduce a security parameter *n* (known to adversary)
- All honest parties run in polynomial time in n
- Security can be tuned by changing *n*
 - *t* and *e* are now functions of *n*
 - *t* -> probabilistic polynomial time (PPT) in *n*
 - *c* -> a negligible function in *n*

Polynomial and Negligible

- A function $f: Z^+ \to Z^+$ is *polynomial* if there exists c such that $f(n) < n^c$ for large enough n
- A function $f: Z^+ \rightarrow [0,1]$ is *negligible* if \forall polynomial p it holds that f(n) < 1/p(n) for large enough n
 - Typical example: $f(n) = poly(n) \cdot 2^{-\alpha n}$

Negligible Function (formally)

- A function $f: Z^+ \to [0,1]$ is *negligible* if \forall polynomial p it holds that $\exists N \in Z^+ \forall n > N$ (for large enough n) we have f(n) < 1/p(n)
 - $\forall p \exists N \in Z^+ \forall n > N, f(n) < 1/p(n)$
- Prove that 2^{-n} is a *negligible* function

Is this a negligible function?

- $f(n) = 2^{-\sqrt{n}}$
- $f(n) = n^{-\log n}$
- $f(n) = 2^{-n}$ for n mod 2 = 0 = n^{-c} for n mod 2 = 1

Choice of Polynomial and Negligible

- Using PPT for efficient machines is borrowed from complexity theory
- Also some nice closure properties:
 - $poly(n) \cdot poly(n)$ is still poly(n)
 - $poly(n) \cdot negl(n)$ is still negl(n)

Concrete vs Asymptotic

A scheme is (t, ϵ) -secure if for any adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ .

A scheme is *secure* if any PPT adversary succeeds in breaking the scheme with probability at most negligible.

Defining Computationally Secure Encryption (syntax)

- A *private-key encryption scheme* is a tuple of algorithms (Gen, Enc, Dec):
 - Gen (1^n) : outputs a key k (assume |k| > n)
 - Enc_k(m): takes key k and message m ∈ {0,1}* as input; outputs ciphertext c

 $c \leftarrow Enc_k(m)$

Dec_k (c): takes key k and ciphertext c as input; outputs m or "error"

$$m := Deck(c)$$

Correctness: For all *n*, *k* output by $Gen(1^n), m \in \{0,1\}^*$ it holds that $Dec_k(Enc_k(m)) = m$

Computational Indistinguishability

$PrivK_{A,\Pi}^{eav}$ (n)

- 1. A outputs $m_0, m_1 \in -\mathcal{M}.\{0,1\}^*, |m_0| = |m_1|$
- 2. $b \leftarrow \{0,1\}, k \leftarrow \text{Gen}(1^n), c \leftarrow Enc_k(m_b)$
- 3. c is given to A
- 4. A output *b*'
- 5. Output 1 if b =
 - b' and 0 otherwise

Encryption scheme $\Pi =$ (*Gen*, *Enc*, *Dec*) with message space \mathcal{M}

is perfectly computationally indistinguishable if $\sqrt[PPT]{A}$ it holds that: $\Pr[\PrivK_{A,\Pi}^{eav}(\underline{n})] \leq \frac{1}{2}$

+ negl(n)

Does not hide message length! A scheme that only supports messages of fixed length is called a fixed-length encryption scheme.

Distinguishing variant

$PrivK_{A,\Pi}^{eav}$ (n, d)

- 1. A outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 2. b = d, $k \leftarrow Gen(1^n)$, $c \leftarrow Enc_k(m_b)$
- *3. c* is given to A
- 4. A output b'
- 5. Output 1 if b = b' and 0 otherwise The output of A is $out_A (PrivK_{A,\Pi}^{eav}(1^n, d))$

- Π is computationallyindistinguishable if∀ PPT A it holds that: $<math display="block">|Pr[out_A(PrivK_{A,\Pi}^{eav}(1^n, 1)) = 1] -$
 - $\Pr\left[\operatorname{out}_{A}\left(\operatorname{Priv} K_{A,\Pi}^{eav}(1^{n}, \mathbf{0})\right) = 1\right] \leq \operatorname{negl}(n).$
 - Here, $\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(1^n, d)$ is same as $\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(1^n)$ except that we set b = d.

Thank You!

