CS171: Cryptography

Lecture 5

Sanjam Garg

Pseudo OTP

- Pseudo OTP is secure
 - Assuming G is a PRG
 - With respect to our definition
- Gain: Pseudo OTP has a short key
 - n bits instead of $\ell(n)$ bits
- Does pseudo OTP allow encryption of multiple messages?
 - Let's first define it!

Security for multiple messages: several ways to define!

Mult Security

$\operatorname{PrivK}_{A,\Pi}^{\operatorname{mult}}(n)$

- 1. A for $i \in \{1 \dots t\}$ outputs $m_{0,i}, m_{1,i} \in \{0,1\}^*, |m_{0,i}| = |m_{1,i}|.$
- 2. $b \leftarrow \{0,1\}, k \leftarrow$ $Gen(1^n), c_i \leftarrow$ $Enc_k(m_{b,i})$
- 3. $c_1 \dots c_t$ is given to A
- 4. A output *b*'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ is indistinguishable multiple encryptions in the presence of an eavesdropper, or is *mult-secure* if

∀ PPT *A* it holds that: $Pr[PrivK_{A,\Pi}^{mult} = 1] \le \frac{1}{2}$ + negl(n)

CPA-Security (De facto Minimum)

$\operatorname{PrivK}_{A,\Pi}^{\operatorname{CPA}}(n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$, $A^{Enc_k(\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 2. $b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$
- 3. c is given to $A^{Enc_k(\cdot)}$
- 4. $A^{Enc_k(\cdot)}$ output b'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under chosenplaintext attack, or is *CPA*secure if \forall PPT *A* it holds that: $\Pr[\PrivK_{A,\Pi}^{CPA} = 1] \leq \frac{1}{2}$

+ negl(n)

Is Pseudo OTP CPA-secure?

 $\operatorname{PrivK}_{A,\Pi}^{\operatorname{CPA}}(n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$, $A^{Enc_k(\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 2. $b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$ 3. c is given to $A^{Enc_k(\cdot)}$
- **4.** $A^{Enc_k(\cdot)}$ output b'
- 5. Output 1 if b = b' and 0 otherwise

No, here is an attacker!

- 1. A queries $Enc_k(\cdot)$ on inputs 0^{ℓ} obtaining C_0 .
- 2. A submits challenge messages 0^{ℓ} and 1^{ℓ}
- 3. Challenger gives c
- 4. A outputs 0 if c = c_0 and 1 otherwise.

Theorem: Any (stateless) encryption scheme with Enc a deterministic function of the key and the message cannot be CPA-secure.

CPA-Security from Multiple Encryptions

- We can define other ``seemingly'' stronger notions of CPA-security. It turns out that these notions are as equivalent as CPA.
- Easy to encrypt long messages: $Enc_k(m_1|| \dots ||m_\ell) = Enc_k(m_1)|| \dots ||Enc_{k(m_\ell)}|$
- No deterministic (stateless) encryption scheme can be CPA secure.

Constructing CPA-Secure Encryption

Pseudorandom Functions (a building block)

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

First, what is a random function?

- Choose a uniformly random function (from the set of all functions) and then we interact with this fixed function
- Once the functions has been chosen there is no additional randomness involved.

Set of all functions Func_n

- $Func_n$ is the set of all functions from $\{0,1\}^n \rightarrow \{0,1\}^n$.
- How many functions are there in *Func_n*:
 - How many bits does it take to describe one function?
 - $n \cdot 2^n$
 - $2^{n \cdot 2^n}$
- So, sampling a random function involves sampling one of the functions in Func_n at random and fixing it
- Sometimes useful to sample the function ``on the fly"

Pseudorandom Function (PRF)

- A function that ``looks'' like a uniformly random (i.e., indistinguishable from a random) function.
- Just as for PRGs we will sample our function from a smaller space.

Keyed Functions

- F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$, where *n* is the security parameter.
- F(k, x): The first input is the key and the second the input (also denoted by $F_k(x)$)
- Key, input and output lengths could be different, but we will use *n* for simplicity.
- F_k will be the sampled function which we will claim to be pseudorandom. On input x the output $F_k(x)$ = F(k, x)
- Only interested in efficiently computable $F(\cdot, \cdot)$

Pseudorandom Function (PRF)

Let $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a PRF if for all PPT distinguishers D, there is a negligible function $negl(\cdot)$ such that: $\left|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]\right| \le negl(n)$ where $k \leftarrow U_n$ and $f \leftarrow Func_n$.

Definition by Picture $|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n)$

Is this a secure PRF?

• $F(k, x) = k \oplus x$?

• No, because $F(k, x_1) \oplus F(k, x_2) = k \oplus x_1 \oplus k \oplus x_2 = x_1 \oplus x_2$. This would not be the case for a random function.

Do PRFs exist?

- Seemingly stronger primitives that PRGs
- But, we know how we can construct PRFs from PRGs

CPA secure Encryption

Let *F* be a *PRF*: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$.

- $Gen(1^n)$: Choose uniform $k \in \{0,1\}^n$ and output it as the key
- $Enc_k(m)$: On input a message $m \in \{0,1\}^n$, sample $r \leftarrow U_n$ output the ciphertext c as $c \coloneqq \langle r, F_k(r) \oplus m \rangle$
- $\text{Dec}_{k}(c)$: On input a ciphertext $c = \langle r, s \rangle$ output the message \bigcirc

$$m \coloneqq F_{\mathbf{k}}(\mathbf{r}) \oplus s$$

Encryption scheme is

randomized!

Proof of Security

- Theorem: If *F* is a PRF, then the construction in the previous slide is a CPA-secure encryption scheme.
- We will prove: Given an adversary *A* the violates a CPA-security of the encryption we will construct a distinguisher D that distinguishes between a PRF and random function.

Step 1: Pull out F_k from Challenger

Recall $Enc_k(m)$: On input a message $m \in \{0,1\}^n$, sample $r \leftarrow U_n$ output the ciphertext c as $c \coloneqq \langle r, F_k(r) \oplus m \rangle$

$$\Pr\left[\operatorname{PrivK}_{\mathbf{A},\Pi}^{\mathbf{CPA},1} = 1\right]$$
$$\geq \frac{1}{2} + \epsilon(n)$$

Step 2: Switch PRF with random f

$$\delta = |\Pr[\operatorname{PrivK}_{A,\Pi}^{CPA,2} = 1] - \Pr[\operatorname{PrivK}_{A,\Pi}^{CPA,1} = 1]|$$

Case I: δ is non-neg(n) Challenger/Adversary combination distinguishes PRF from random function

$$\left| \Pr \left[CA^{F_k(\cdot)}(1^n) = 1 \right] - \Pr \left[CA^{f(\cdot)}(1^n) = 1 \right] \right| = \delta$$

A contradiction

Step 2: Switch PRF with random f

PRF based OTP

- Get's CPA security
- Can encrypt message of arbitrary length $Enc_k(m_1|| \dots ||m_t) = Enc_k(m_1)|| \dots Enc_k(m_t)$
- Negative: $Enc_k(m) = \langle r, F_k(r) \oplus m \rangle$
 - Ciphertext size is double the message length

CPA-security is stronger that Multsecurity

Why are we

looking at this

weird scheme,?

How can we prove this?

- Construct an encryption scheme Π that is Mult-secure but not CPA-secure.
- Simplify problem: Assume Φ is Mult-secure and CPA secure then we will weaken Φ to get Π so that it is Mult-secure but not CPA-secure
- Given $\Phi = (Gen, Enc, Dec)$ we set $\Pi =$ (Gen', Enc', Dec')
- $Gen'(1^n)$: Set $k' = (k, m^*)$ where $k, m^* \leftarrow Gen(1^n)$
- $\operatorname{Enc}_{k\prime}(m)$: If $m = m^*$ then output m^* . Otherwise, output $Enc_k(m)||m^*$.
- $\text{Dec}'_{kl}(c)$: Define naturally!

Need to prove that (1) Π is mult-secure but (2) is not CPA-secure!

(1) Π is mult-secure

- The probability A can ask for an encryption of m^* is negligible (or at most $\frac{2t}{2^n}$) as the secret-key has at least n-bits.
- If there are no such

 `weird'' queries, then then
 game is same as the mult game for Φ.

$\operatorname{PrivK}_{\mathbf{A},\Pi}^{\operatorname{mult}}(n)$

1. A for $i \in \{1 \dots t\}$ outputs $m_{0,i}, m_{1,i} \in \{0,1\}^*, |m_{0,i}| = |m_{1,i}|.$

2.
$$b \leftarrow \{0,1\}, k \leftarrow$$

Gen $(1^n), c_i \leftarrow$
 $Enc_k(m_{b,i})$

- *3.* $c_1 \dots c_t$ is given to A
- **4**. **A** output *b*'
- 5. Output 1 if b = b'and 0 otherwise

(2) ∏ is not CPA-secure

$\operatorname{PrivK}_{A,\Pi}^{\operatorname{CPA}}(n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$, $A^{Enc_k(\cdot)}$ outputs $m_0, m_1 \in \{0,1\}^*, |m_0| = |m_1|.$
- 2. $b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$
- 3. c is given to $A^{Enc_k(\cdot)}$
- **4.** $A^{Enc_k(\cdot)}$ output b'
- 5. Output 1 if b = b' and 0 otherwise

Α

- 1. Query $Enc_k(\cdot)$ on input 0^n and let $c||m^*$ be the received ciphertext
- 2. Submit $m_0 = m^*$ and $m_1 = 0^n$.
- 3. Output 0 if $c^* = m^*$ and 1 otherwise.

Thank You!

