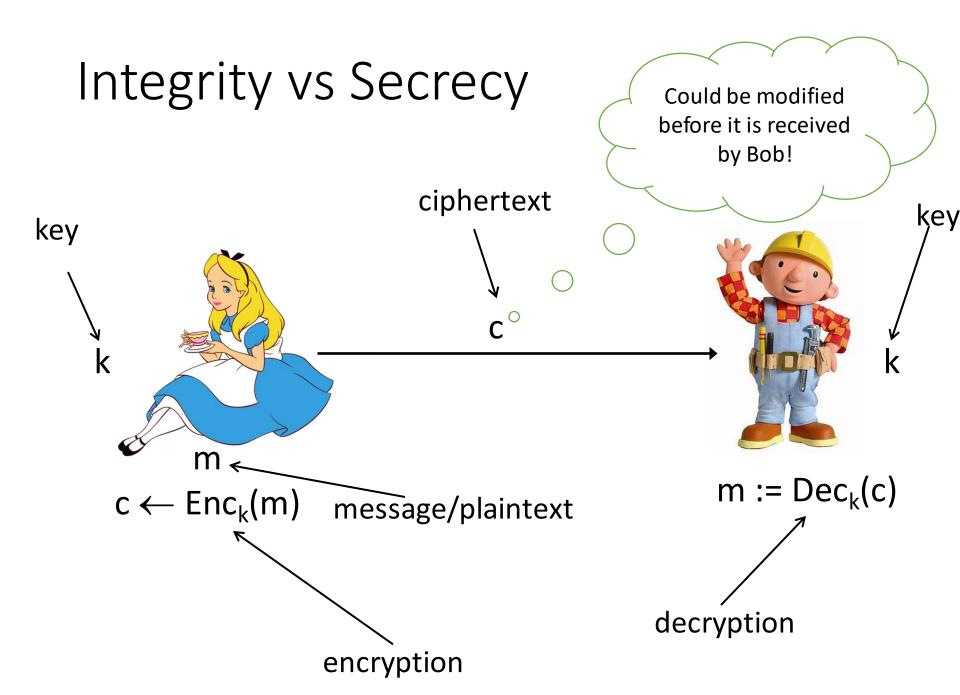
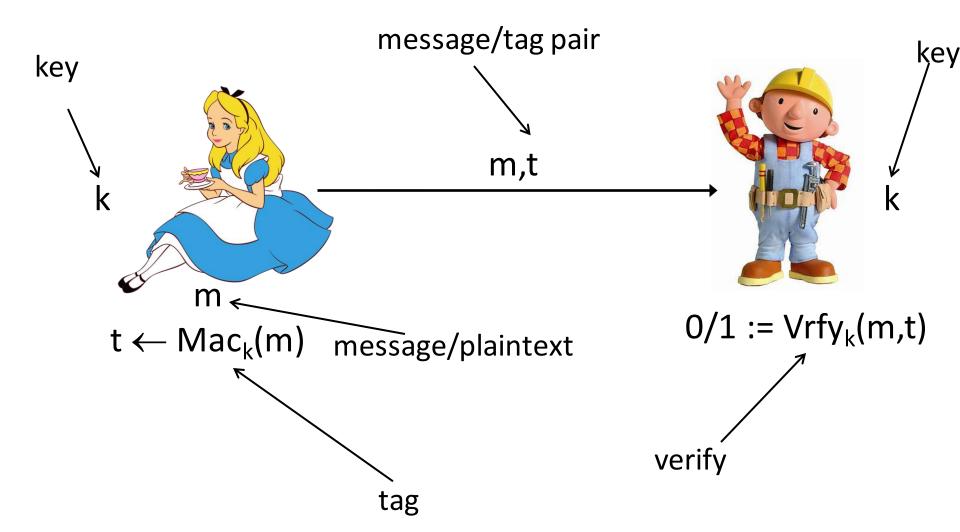
CS171: Cryptography

Lecture 9

Sanjam Garg



Message Authentication Code (MAC)



MACs - Formally

- (Gen, Mac, Vrfy)
- $Gen(1^n)$: Outputs a key k.
- $Mac_k(m)$: Outputs a tag t.
- $Vrfy_k(m, t)$: Outputs 0/1.
- Correctness: $\forall n, k \leftarrow Gen(1^n), \forall m \in \{0,1\}^*$, we have that $Vrfy_k(m, Mac_k(m)) = 1$.
- Default Construction of Vrfy (for deterministic Mac): $Vrfy_k(m, t)$ outputs 1 if and only $Mac_k(m) = t$.

Unforgeability/Security of MAC

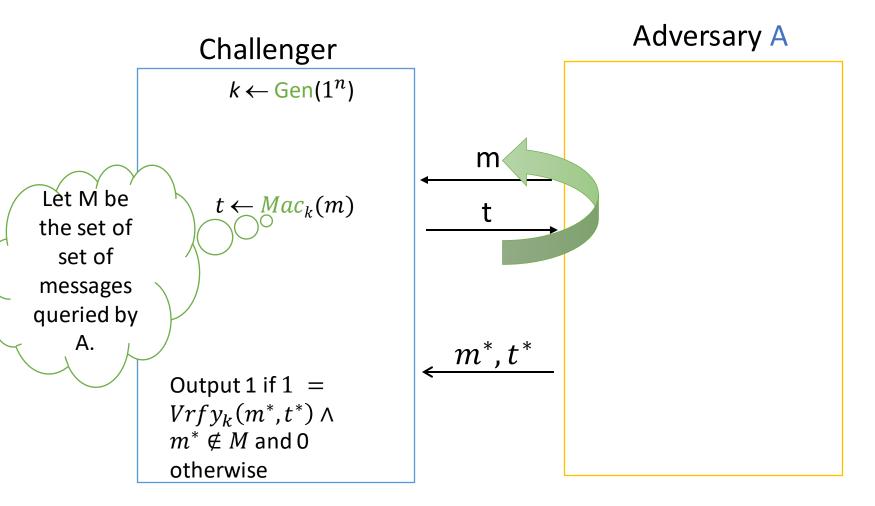
 $MacForge_{A,\Pi}(1^n)$

- 1. Sample $k \leftarrow \text{Gen}(1^n)$.
- 2. Let (m^*, t^*) be the output of $A^{Mac_k(\cdot)}$. Let M be the list of queries A makes.
- 3. Output 1 if $Vrf y_k(m^*, t^*) = 1 \land m^* \notin M$ and 0 otherwise.

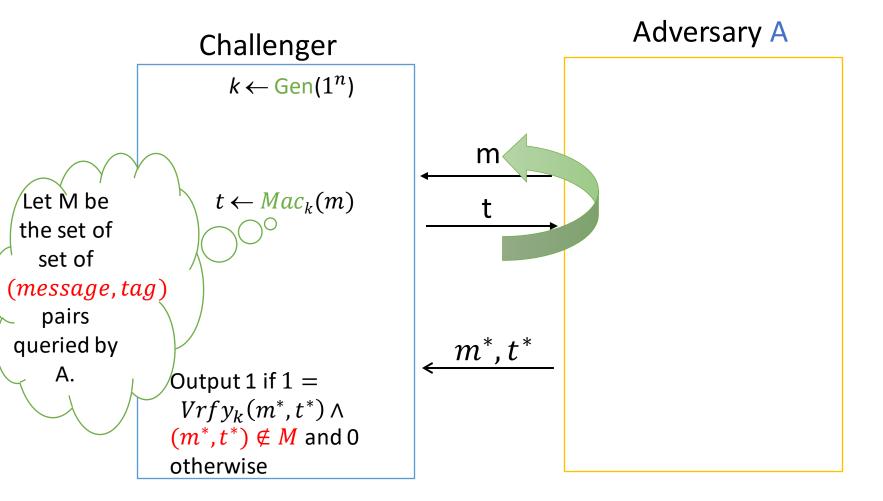
 $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under adaptive chosen attack, or is *eu-cma-secure* if \forall PPT *A* it holds that: $\Pr[MacForge_{A,\Pi} = 1] \leq negl(n)$

Unforgeability (Pictorially)

$MacForge_{A,\Pi}(1^n)$

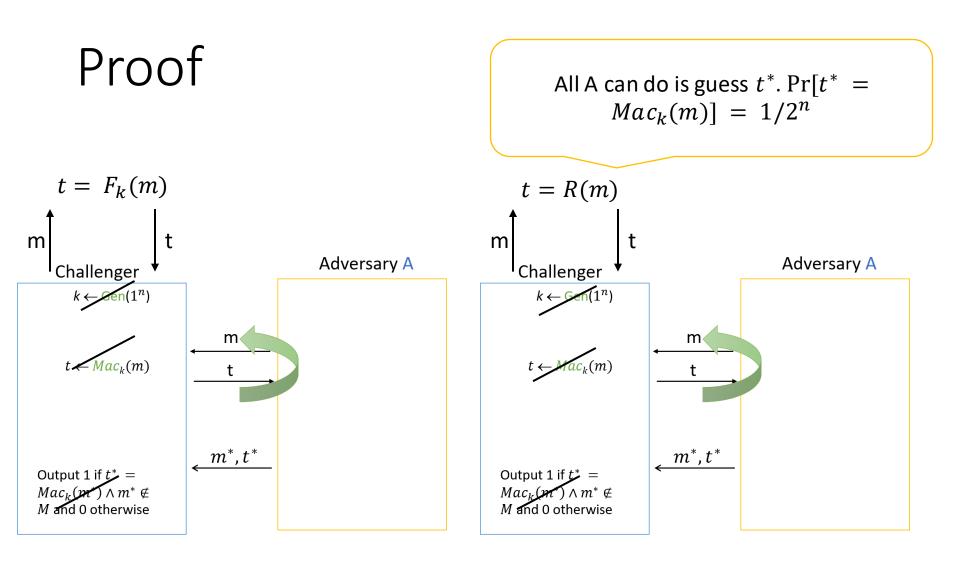


Strong Unforgeability $MacForge^{Str}_{A,\Pi}(1^n)$



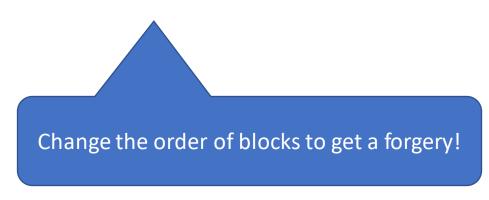
MAC Construction (for fixedlength message)

- Let $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a PRF
- Gen (1^n) : Sample $k \leftarrow \{0,1\}^n$.
- $Mac_k(m)$: Output tag $t = F_k(m)$.
- $Vrfy_k(m, t)$: Use default construction.



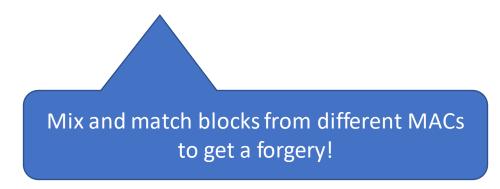
Attempt 1

- $Mac'_{k}(m \in \{0,1\}^{*})$:
 - 1. Parse m as $m_1 \cdots m_d$ where each m_i is of length n
 - 2. Output $t_1 \dots t_d$, where for each *i* we have
 - $t_i = Mac_k(m_i)$



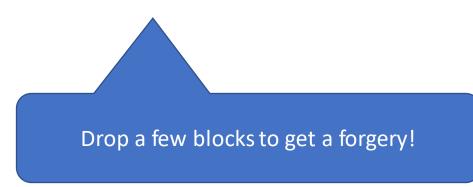
Attempt 2

- $Mac'_{k}(m \in \{0,1\}^{*})$:
 - 1. Parse m as $m_1 \cdots m_d$ where each m_i is of length n/2
 - 2. Output $t_1 \dots t_d$, where for each *i* we have
 - $t_i = Mac_k(i||m_i)$

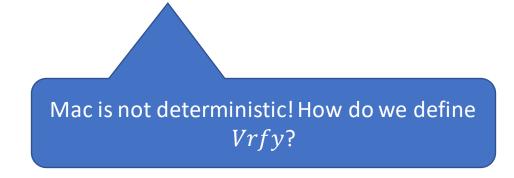


Attempt 3

- $Mac'_k (m \in \{0,1\}^*)$:
 - 1. Parse m as $m_1 \cdots m_d$ where each m_i is of length n/3
 - 2. Sample $r \leftarrow \{0,1\}^{n/3}$
 - 3. Output $t_1 \dots t_d$, where for each *i* we have
 - $t_i = Mac_k(r||i||m_i)$

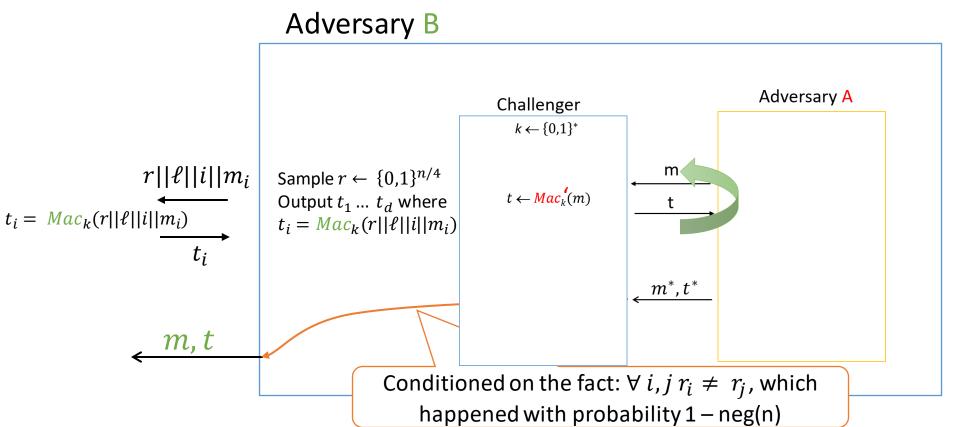


- $Mac'_k (m \in \{0,1\}^*)$:
 - Parse m as $m_1 \cdots m_d$ where each m_i is of length n/4
 - $r \leftarrow \{0,1\}^{n/4}$
 - Output r, $t_1 \dots t_d$, where for each i we have
 - $t_i = Mac_k(r||\ell||i||m_i)$, where ℓ is the number of blocks



Proof of Security

Consider an adversary A that breaks Mac' then we construct an adversary B that breaks Mac



Proof of Security: Case Analysis

- A outputs $t^* = (r^*, t_1^*, \dots, t_{\ell^*}^*)$:
 - Case I: $\forall i, r^* \neq r_i$ then we have a forgery
 - Case II: $\exists i, r^* = r_i$ but $\ell^* \neq \ell_i$, again a forgery as ℓ^* appears in each block.
 - Case III: $\exists i, r^* = r_i$ but $\ell^* = \ell_i, m^* \neq m_i$, a forgery on at least one block.
- Thus, B can use the forgery above as its output.

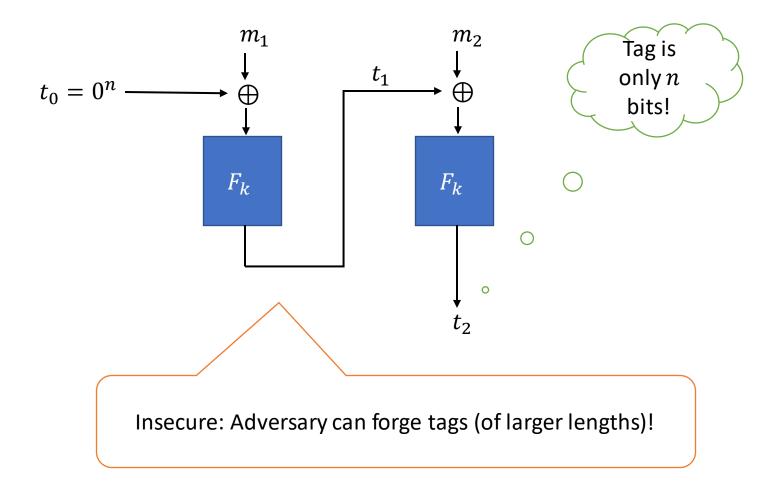
For a message of length $\ell \cdot n$ bits, what is the length of the Mac?

Proof of Security: Case Analysis

- A outputs $t^* = (r^*, t_1^*, \dots, t_{\ell^*}^*)$:
 - Case I: $\forall i, r^* \neq r_i$ then we have a forgery
 - Case II: $\exists i, r^* = r_i$ but $\ell^* \neq \ell_i$, again a forgery as ℓ^* appears in each block.
 - Case III: $\exists i, r^* = r_i$ but $\ell^* = \ell_i, m^* \neq m_i$, a forgery on at least one block.
- Thus, B can use the forgery above as its output.

For a message of length $\ell \cdot n$ bits we get a Mac of length $4 \cdot \ell \cdot n!$ Very inefficient!

CBC-MAC (Using Block Cipher)



Attack on CBC-MAC

- Adversary obtains tag t_1 on a random message m_1
- Next, adversary obtains tag t_2 on message $t_1 \bigoplus m_2$.
- Note that t_2 serves as a tag on message $m_1 || m_2$

Thm: Let $\ell(\cdot)$ be a polynomial. If F is a PRF, then the CBC-MAC is ef-cma for messages of length $\ell(n) \cdot n$.

Proof of Security for fixed length

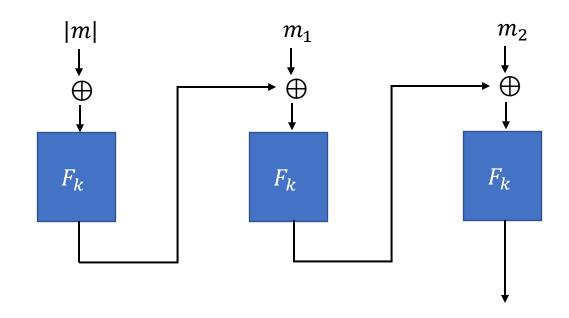
Suffices to prove that CBC is a PRF!

 $CBC_k(x_1, \dots x_{\ell}) = F_k(F_k(\dots F_k(F_k(x_1) \oplus x_2) \oplus \dots) \oplus x_{\ell}),$ where $|x_1| = |x_2| \dots = |x_{\ell}|.$

- In fact more: CBC_k(·) is a PRF as long as inputs are from the set P ⊂ ({0,1}ⁿ)* that is prefix-free
 - P doesn't contain the empty string
 - There doesn't exist $x, x' \in P$ such that x is prefix of x'
- Intuitive, we will not prove it!

Use this to Mac messages of arbitrary length (multiples of n)

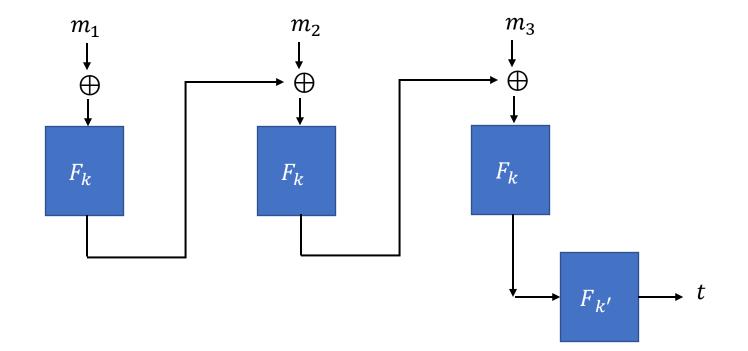
• Method 1: Mac on message m is the CBC-Mac on message $|m| \parallel m$



t

Use this to sign messages of arbitrary length (multiples of n)

• Method 2: Mac of the CBC-Mac



Thank You!

