
CS171: Cryptography
Lecture 9

Sanjam Garg

All Photos are by Unknown Author and are licensed under CC BY-SA

https://en.wikipedia.org/wiki/Auguste_Kerckhoffs
https://creativecommons.org/licenses/by-sa/3.0/

Integrity vs Secrecy

k k
c

m
c Enck(m) message/plaintext

encryption

m := Deck(c)

decryption

key
ciphertext key

Could be modified
before it is received

by Bob!

Message Authentication Code
(MAC)

k k
m,t

m
t Mack(m) message/plaintext

tag

0/1 := Vrfyk(m,t)

verify

key
message/tag pair key

MACs - Formally

• (𝐺𝑒𝑛, 𝑀𝑎𝑐, 𝑉𝑟𝑓𝑦)

• 𝐺𝑒𝑛(1𝑛): Outputs a key 𝑘.

• 𝑀𝑎𝑐𝑘 𝑚 : Outputs a tag 𝑡.

• 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑡 : Outputs 0/1.

• Correctness: ∀ 𝑛, 𝑘 ← 𝐺𝑒𝑛 1𝑛 , ∀𝑚 ∈ 0,1 ∗, we
have that 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑀𝑎𝑐𝑘(𝑚) = 1.

• Default Construction of 𝑉𝑟𝑓𝑦 (for deterministic
Mac): 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑡 outputs 1 if and only
𝑀𝑎𝑐𝑘 𝑚 = 𝑡.

Unforgeability/Security of MAC

MacForgeA,Π(1𝑛)

1. Sample k Gen(1𝑛).

2. Let (𝑚∗ , 𝑡∗) be the
output of 𝐴

𝑀𝑎𝑐𝑘(⋅)
.

Let 𝑀 be the list of
queries A makes.

3. Output 1 if
𝑉𝑟𝑓𝑦𝑘 𝑚∗, 𝑡∗ = 1 ∧
𝑚∗ ∉ 𝑀 and 0
otherwise.

Π = (𝐺𝑒𝑛, 𝑀𝑎𝑐, 𝑉𝑟𝑓𝑦)
is existentially
unforgeable under
adaptive chosen attack,
or is eu-cma-secure if

∀ PPT 𝐴 it holds that:

Pr MacForgeA,Π = 1 ≤
 negl(n)

Unforgeability (Pictorially)
MacForgeA,Π(1𝑛)

Adversary A

m

t

Challenger
k Gen(1𝑛)

𝑡 𝑀𝑎𝑐𝑘(𝑚)

𝑚∗, 𝑡∗

Output 1 if 1 =
𝑉𝑟𝑓𝑦𝑘 𝑚∗, 𝑡∗ ∧
𝑚∗ ∉ 𝑀 and 0
otherwise

Let M be
the set of

set of
messages

queried by
A.

Strong Unforgeability
MacForgeA,Π

𝑆𝑡𝑟 (1𝑛)

Adversary A

m

t

Challenger
k Gen(1𝑛)

𝑡 𝑀𝑎𝑐𝑘(𝑚)

𝑚∗, 𝑡∗

Output 1 if 1 =
 𝑉𝑟𝑓𝑦𝑘 𝑚∗, 𝑡∗ ∧
(𝑚∗, 𝑡∗) ∉ 𝑀 and 0
otherwise

Let M be
the set of

set of
(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑡𝑎𝑔)

pairs
queried by

A.

MAC Construction (for fixed-
length message)

• Let 𝐹: 0,1 𝑛 × 0,1 𝑛 → 0,1 𝑛 be a PRF

• 𝐺𝑒𝑛 1𝑛 : Sample 𝑘 ← 0,1 𝑛.

• 𝑀𝑎𝑐𝑘 𝑚 : Output tag 𝑡 = 𝐹𝑘(𝑚).

• 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑡 : Use default construction.

Proof

m t

𝑡 = 𝐹𝑘(𝑚)

𝐻0

m t

𝑡 = 𝑅(𝑚)

𝐻1

All A can do is guess 𝑡∗. Pr[𝑡∗ =
 𝑀𝑎𝑐𝑘(𝑚)] = 1/2𝑛

MAC (from fixed-length to
arbitrary-length messages)
Construct 𝑀𝑎𝑐′ (arbitrary-length) from 𝑀𝑎𝑐 (fixed-
length)

• 𝑀𝑎𝑐𝑘
′ 𝑚 ∈ 0,1 ∗ :

1. Parse 𝑚 as 𝑚1 ⋯ 𝑚𝑑 where each 𝑚𝑖 is of length 𝑛

2. Output 𝑡1 … 𝑡𝑑, where for each 𝑖 we have
• 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑚𝑖)

Attempt 1

Change the order of blocks to get a forgery!

MAC (from fixed-length to
arbitrary-length messages)
Construct 𝑀𝑎𝑐′ (arbitrary-length) from 𝑀𝑎𝑐 (fixed-
length)

• 𝑀𝑎𝑐𝑘
′ 𝑚 ∈ 0,1 ∗ :

1. Parse 𝑚 as 𝑚1 ⋯ 𝑚𝑑 where each 𝑚𝑖 is of length 𝑛/2

2. Output 𝑡1 … 𝑡𝑑, where for each 𝑖 we have
• 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑖||𝑚𝑖)

Attempt 2

Mix and match blocks from different MACs
to get a forgery!

MAC (from fixed-length to
arbitrary-length messages)
Construct 𝑀𝑎𝑐′ (arbitrary-length) from 𝑀𝑎𝑐 (fixed-
length)

• 𝑀𝑎𝑐𝑘
′ 𝑚 ∈ 0,1 ∗ :

1. Parse 𝑚 as 𝑚1 ⋯ 𝑚𝑑 where each 𝑚𝑖 is of length 𝑛/3

2. Sample 𝑟 ← 0,1 𝑛/3

3. Output 𝑡1 … 𝑡𝑑, where for each 𝑖 we have
• 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑟||𝑖||𝑚𝑖)

Attempt 3

Drop a few blocks to get a forgery!

MAC (from fixed-length to
arbitrary-length messages)
Construct 𝑀𝑎𝑐′ (arbitrary-length) from 𝑀𝑎𝑐 (fixed-
length)

• 𝑀𝑎𝑐𝑘
′ 𝑚 ∈ 0,1 ∗ :

• Parse 𝑚 as 𝑚1 ⋯ 𝑚𝑑 where each 𝑚𝑖 is of length 𝑛/4

• 𝑟 ← 0,1 𝑛/4

• Output r, 𝑡1 … 𝑡𝑑, where for each 𝑖 we have
• 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑟||ℓ||𝑖||𝑚𝑖), where ℓ is the number of blocks

Mac is not deterministic! How do we define
𝑉𝑟𝑓𝑦?

Proof of Security

• Consider an adversary A that breaks 𝑀𝑎𝑐′ then we
construct an adversary B that breaks 𝑀𝑎𝑐

Sample 𝑟 ← 0,1 𝑛/4

Output 𝑡1 … 𝑡𝑑 where
𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑟||ℓ||𝑖||𝑚𝑖)

Adversary B

𝑡𝑖

𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑟||ℓ||𝑖||𝑚𝑖)

𝑟||ℓ||𝑖||𝑚𝑖

𝑚, 𝑡

Conditioned on the fact: ∀ 𝑖, 𝑗 𝑟𝑖 ≠ 𝑟𝑗 , which

happened with probability 1 – neg(n)

‘

Proof of Security: Case Analysis

• A outputs t∗ = (𝑟∗, 𝑡1
∗, … 𝑡ℓ∗

∗):
• Case I: ∀ 𝑖, 𝑟∗≠ 𝑟𝑖 then we have a forgery

• Case II: ∃ 𝑖, 𝑟∗= 𝑟𝑖 but ℓ∗ ≠ ℓ𝑖, again a forgery as ℓ∗
appears in each block.

• Case III: ∃ 𝑖, 𝑟∗= 𝑟𝑖 but ℓ∗ = ℓ𝑖, 𝑚∗ ≠ 𝑚𝑖, a forgery on
at least one block.

• Thus, B can use the forgery above as its output.

For a message of length ℓ ⋅ 𝑛 bits, what is the length of the Mac?

Proof of Security: Case Analysis

• A outputs t∗ = (𝑟∗, 𝑡1
∗, … 𝑡ℓ∗

∗):
• Case I: ∀ 𝑖, 𝑟∗≠ 𝑟𝑖 then we have a forgery

• Case II: ∃ 𝑖, 𝑟∗= 𝑟𝑖 but ℓ∗ ≠ ℓ𝑖, again a forgery as ℓ∗
appears in each block.

• Case III: ∃ 𝑖, 𝑟∗= 𝑟𝑖 but ℓ∗ = ℓ𝑖, 𝑚∗ ≠ 𝑚𝑖, a forgery on
at least one block.

• Thus, B can use the forgery above as its output.

For a message of length ℓ ⋅ 𝑛 bits we get a Mac of length 4 ⋅ ℓ ⋅ 𝑛! Very
inefficient!

CBC-MAC (Using Block Cipher)

𝐹𝑘

𝑚1

𝑡1

𝐹𝑘

𝑚2

𝑡2

⊕ ⊕𝑡0 = 0𝑛

Tag is
only 𝑛
bits!

Insecure: Adversary can forge tags (of larger lengths)!

Attack on CBC-MAC

• Adversary obtains tag 𝑡1 on a random message 𝑚1

• Next, adversary obtains tag 𝑡2 on message 𝑡1 ⊕
𝑚2.

• Note that 𝑡2 serves as a tag on message 𝑚1||𝑚2

Thm: Let ℓ(⋅) be a polynomial. If 𝐹 is a PRF, then the CBC-MAC
is ef-cma for messages of length ℓ 𝑛 ⋅ 𝑛.

Proof of Security for fixed length

Suffices to prove that CBC is a PRF!

 𝐶𝐵𝐶𝑘 𝑥1, … 𝑥ℓ = 𝐹𝑘 𝐹𝑘 … Fk Fk x1 ⊕ 𝑥2 ⊕ ⋯ ⊕ 𝑥ℓ ,
where 𝑥1 = 𝑥2 … = 𝑥ℓ .

• In fact more: 𝐶𝐵𝐶𝑘 ⋅ is a PRF as long as inputs are from the
set 𝑃 ⊂ 0,1 𝑛 ∗ that is prefix-free
• P doesn’t contain the empty string

• There doesn’t exist 𝑥, 𝑥′ ∈ 𝑃 such that 𝑥 is prefix of 𝑥′

• Intuitive, we will not prove it!

Use this to Mac messages of
arbitrary length (multiples of n)
• Method 1: Mac on message 𝑚 is the CBC-Mac on

message 𝑚 || 𝑚

𝐹𝑘 𝐹𝑘

𝑡

⊕ ⊕

𝑚1|𝑚|

𝐹𝑘

𝑚2

⊕

Use this to sign messages of
arbitrary length (multiples of n)
• Method 2: Mac of the CBC-Mac

𝐹𝑘 𝐹𝑘

𝑡

⊕ ⊕

𝑚2𝑚1

𝐹𝑘

𝑚3

⊕

𝐹𝑘′

Thank You!

	Default Section
	Slide 1: CS171: Cryptography
	Slide 2: Integrity vs Secrecy
	Slide 3: Message Authentication Code (MAC)
	Slide 4: MACs - Formally
	Slide 5: Unforgeability/Security of MAC
	Slide 6: Unforgeability (Pictorially)
	Slide 7: Strong Unforgeability
	Slide 8: MAC Construction (for fixed-length message)
	Slide 9: Proof
	Slide 10: MAC (from fixed-length to arbitrary-length messages)
	Slide 11: MAC (from fixed-length to arbitrary-length messages)
	Slide 12: MAC (from fixed-length to arbitrary-length messages)
	Slide 13: MAC (from fixed-length to arbitrary-length messages)
	Slide 14: Proof of Security
	Slide 15: Proof of Security: Case Analysis
	Slide 16: Proof of Security: Case Analysis
	Slide 17: CBC-MAC (Using Block Cipher)
	Slide 18: Attack on CBC-MAC
	Slide 19: Proof of Security for fixed length
	Slide 20: Use this to Mac messages of arbitrary length (multiples of n)
	Slide 21: Use this to sign messages of arbitrary length (multiples of n)
	Slide 22: Thank You!

