Final Exam Review Session CS 171

April 30, 2024

Table of Contents

Identity-Based Encryption

Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

(Similar high-level syntax and properties as other encryption schemes we've seen earlier like ${\sf SKE}/{\sf PKE}$)

- $Setup(1^{\lambda}) \rightarrow (msk, mpk).$
- $\mathit{KeyGen}(\mathit{msk}, \mathsf{ID}) \rightarrow \mathsf{sk_{ID}}$
- $Enc(mpk, ID, m) \rightarrow ct$
- $Dec(\mathbf{sk_{ID}}, ct) \rightarrow m$

Properties:

- Correctness: $\textit{Dec}(sk_{ID},\textit{Enc}(\textit{mpk},ID,\textit{m})) \rightarrow \textit{m}$
- CPA Security slightly different game compared to CPA security in SKE/PKE

IBE: CPA Security Game

- Challenger runs $Setup(1^{\lambda}) \rightarrow (msk, mpk)$ and sends mpk to the adversary.
- Keygen Queries: Phase 1 Adversary sends *ID* to the challenger and gets back *sk_{ID}* ← *KeyGen(msk, ID)* corresponding to the *ID*.
- Ochallenge phase: Adversary sends a *ID** that was not queried as well as messages m₀ ≠ m₁.
- Challenger picks $b \leftarrow \{0,1\}$ and returns $c_b \leftarrow Enc(mpk, ID^*, m_b)$.
- Several Section 5 Several Se
- O Adversary outputs a guess b' for b.

- The adversary has the power to choose which ID to use for the challenge phase, unlike in SKE/PKE, where the public key for encryption is fixed at the very beginning.
- KeyGen does what is designed to be hard to do in SKE/PKE it computes a secret key for an ID given a public key (*How? Using additional secret information msk*).
- For questions: Most reductions will look similar to CPA security of SKE/PKE – make sure the adversaries receive the right answers to queries and that the ciphertext distribution is correct.
- Additional complexity: Need to take care of KeyGen queries.

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme (S, K, E, D), construct a CPA-secure PKE scheme (Gen, Enc, Dec).

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme (S, K, E, D), construct a CPA-secure PKE scheme (Gen, Enc, Dec).

- $Gen(1^{\lambda})$: Run $S(1^{\lambda}) \rightarrow (msk, mpk)$ and return sk = msk, pk = mpk.
- Enc(pk, m): Sample a random *ID* and run $E(mpk, ID, m) \rightarrow ct$. Output (*ID*, *ct*) as the ciphertext.
- Dec(sk, (ID, ct)): First, derive sk_{ID} for the ID and then run $Dec(sk_{ID}, ct) \rightarrow m$.

IBE: Practice problem - Properties

Correctness: follows from correctness of IBE.

Correctness: follows from correctness of IBE.

CPA security: Suppose PKE was not CPA-secure. Let A be an adversary that wins in the CPA game for PKE. We'll build an adversary B to break CPA security of IBE.

- IBE challenger runs S(1^λ) → (msk, mpk) and gives mpk to B. B sends it to A as pk.
- A outputs two challenge messages m_0, m_1 .
- B samples a random ID and sends (ID, m_0, m_1) to the IBE challenger.
- The IBE challenger chooses random b = 0/1 and returns c = E(mpk, ID, m_b).
- B sends (ID, c) to A and outputs whatever A outputs.

aliee

8/53

We did not need to make any keygen queries!

Identity-Based Encryption

Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

A group G is a set with a binary operation \cdot satisfying the following properties:

Closure $\forall g, h \in G$, we have that $g \cdot h \in G$. Identity existence $\exists i \in G$ such that $\forall g \in G, g \cdot i = g = i \cdot g$. Inverse existence $\forall g \in G, \exists h \in G$ such that $g \cdot h = i = h \cdot g$. Associativity $\forall g_1, g_2, g_3 \in G$, we have that $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$.

- Let G be a finite group with order m, Then:
 - for any element $g \in G$, we have $g^m = 1$.
 - for any element $g \in G$ and integer x, $g^{x} = g^{x \mod m}$.
- **2** A group G is cyclic if $\exists g \in G$ such that $\{g^1, \ldots, g^m\} = G$.
 - If G is a group of prime order p, then G is cyclic and every element except the identity is a generator of G.

- Let G(1ⁿ) be a PPT algorithm generating the description of a cyclic group of order q (q = |G| ≈ 2ⁿ) and a generator g.
- One that:
 - We can represent each group element with a unique bit representation of size log₂(*n*).
 - The group operation (addition) can be performed in time poly(n).
 - Sampling a group element uniformly at random can be performed in time poly(n) (given randomness).
- I.e., we can sample a random element x ∈ Z_q and compute g^x in time poly(n).

 $\mathrm{DLog}_{\mathcal{A},\mathcal{G}}(n)$

- Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- **2** Sample uniform $h \in G$.
- \mathcal{A} is given (G, g, q, h) and it outputs x.

• Output 1 if $g^{\times} = h$ and 0 otherwise.

We say that the Discrete-Log Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(·) such that

$$|\Pr[\operatorname{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1]| \le \operatorname{negl}(n).$$

Two main forms:

- Computational Diffie-Hellman Problem (CDH): given g^a and g^b, adversary needs to compute g^{ab} to win the game.
- Occisional Diffie-Hellman Problem (DDH): given g^a and g^b, adversary needs to distinguish g^{ab} from a random group element to win the game.

 $\operatorname{CDH}_{\mathcal{A},\mathcal{G}}(n)$

- Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- **2** Sample uniform $a, b \in \mathbb{Z}_q^*$.
- \mathcal{A} is given (G, g, q, g^a, g^b) and it outputs h.

• Output 1 if $g^{ab} = h$ and 0 otherwise.

We say that the CDH Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(·) such that

$$|\Pr[CDH_{\mathcal{A},\mathcal{G}}(n) = 1]| \le \operatorname{negl}(n).$$

 $DDH_{\mathcal{A},\mathcal{G}}(n)$

- Run $\mathcal{G}(1^n)$ to obtain (G, g, q).
- **2** Sample uniform $a, b, r \in \mathbb{Z}_q^*$. Sample a uniform bit $c \in \{0, 1\}$.
- **3** \mathcal{A} is given $(G, g, q, g^a, g^b, g^{ab+cr})$ and it outputs c'.
- Output 1 if c = c' and 0 otherwise.

We say that the DDH Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(·) such that

$$|\Pr[\mathrm{DDH}_{\mathcal{A},\mathcal{G}}(n)=1]| \leq rac{1}{2} + \operatorname{\mathsf{negl}}(n).$$

- Groups where CDH is hard, but DDH is easy"
- 2 Consider a group G of prime order q and generator g:
- We get a pairing operation e such that:
 - $e: G \times G \rightarrow G_T$
 - If g is a generator of G then e(g,g) is a generator of G_T

•
$$orall a,b\in\mathbb{Z}_q^*$$
, $e(g^a,g^b)=e(g,g)^{ab}$

Intuition:

- DDH is easy because if A, B, C is a DDH tuple, we can check e(A, B) = e(g, C)
- CDH is hard because... no attacks are known.

 $\mathrm{DBDH}_{\mathcal{A},\mathcal{G}}(n)$

- Solution Run $\mathcal{G}(1^n)$ to obtain $(G, G_T, g, q, e(\cdot, \cdot))$.
- **2** Sample uniform $a, b, c, r \in \mathbb{Z}_q^*$. Sample a uniform bit $\beta \in \{0, 1\}$.
- A is given $(G, G_T, g, q, g^a, g^b, g^c, e(g, g)^{abc+\beta r})$ and it outputs β' .
- Output 1 if $\beta = \beta'$ and 0 otherwise.

We say that the DBDH Problem is hard relative to \mathcal{G} if \forall PPT adversaries \mathcal{A} , \exists function negl(\cdot) such that

$$|\Pr[\text{DBDH}_{\mathcal{A},\mathcal{G}}(n)=1]-\frac{1}{2}|\leq \operatorname{negl}(n).$$

From Weakest (Easiest) to Strongest (Hardest):

$\begin{array}{rcl} \text{DDH} \implies \text{CDH} \implies \text{DLog} \implies \text{CRHF} \implies \text{OWF} \\ \text{CDH} \implies \text{DBDH} \end{array}$

 $CDH \implies DLog:$

- Want to show that if computing x from g^x in G was easy, then so is computing g^{ab} from g^a and g^b in G.
- ② Given (G, g, q, g^a, g^b) , run $\mathcal{A}_{\text{Dlog}}$ on g^a to get a. Compute $(g^b)^a = g^{ab}$.
- This approach wins with the same probability that A_{Dlog} solves the Dlog instance (non-negl).

 $DDH \implies CDH:$

- Want to show that if computing g^{ab} from g^a and g^b in G was easy, then so is distinguishing DDH triples.
- Given (G, g, q, g^a, g^b, g^{ab+cr}), run A_{CDH} on g^a and g^b to get g^{ab} and check if it equals g^{ab+cr}.
- S This approach wins the DDH game with non-negl probability.

Table of Contents

Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

- **Gen**(1ⁿ): Outputs public key and secret key pair (*pk*, *sk*).
- **Sign**_{*sk*}(*m*): Outputs a signature σ on the message *m*.
- Vrfy_{pk} (m, σ) : Outputs 0/1.

Correctness: For all *n*, except for negligible choices of (pk, sk), it holds that for all *m*, $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$.

The task of the adversary is essentially to *forge* a valid signature, which successfully verifies, without having the secret key.

 $Forge_{A,\Pi}(1^n)$

- Sample $(pk, sk) \leftarrow \mathbf{Gen}(1^n)$.
- 2 Let (m^{*}, σ^{*}) be the output of Sign_{sk}(·) by adversary A(pk). Let M be the list of queries A makes.
- **3** Output 1 if $Vrfy_{pk}(m^*, \sigma^*) = 1 \land m^* \notin M$ and 0 otherwise.

 $\Pi = ($ **Gen**, **Sign**, **Vrfy**) is existentially unforgeable under adaptive chosen message attack if \forall probabilistic polynomial time (PPT) adversary *A*, it holds that:

$$\Pr[\operatorname{Forge}_{A,\Pi} = 1] \leq \operatorname{negl}(n)$$

Let (Gen, Sign, Vrfy) be a perfectly correct secure digital signature scheme. Perfect correctness states that for any message m,

$$\Pr_{r_{\mathsf{Gen}}, r_{\mathsf{Sign}} \leftarrow \{0,1\}^n, (vk, sk) := \mathsf{Gen}(1^n; r_{\mathsf{Gen}})}[\mathsf{Vrfy}(vk, m, \mathsf{Sign}(sk, m; r_{\mathsf{Sign}})) = 1] = 1,$$

where r_{Gen} are the random coins used by Gen and r_{Sign} are the random coins used by Sign. **Define** f(x) to output the verification key vk output by Gen $(1^n; x)$. **Show that** f is a one-way function.

If there exists a probabilistic polynomial time (PPT) A that can invert f with non-negligible probability, then we can construct a PPT B that breaks the security of the signature scheme:

- **(**) B gets pk from its challenger and forwards it to A.
- 2 A outputs x' such that f(x') = pk.
- B computes $(pk, sk') := \text{Gen}(1^n; x')$.
- B picks an arbitrary message m and computes $\sigma \leftarrow \text{Sign}_{sk'}(m)$.
- Since (pk, sk') is generated from Gen, σ is a valid signature for m with respect to pk. Hence B breaks the security of the signature scheme with non-negligible probability.

Table of Contents

Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

Commitment Scheme Syntax

- Gen $(1^n) \rightarrow$ params
- **2** Commit(params, m; r) = com
 - \mathcal{M} is the message space, and $m \in \mathcal{M}$.
 - Other notation: Commit(params, m) \rightarrow com
- Open: Committer publishes *m* and proves that com is a commitment to *m*. The verifier decides whether to accept or reject the proof.
 - Canonical Opening Procedure:
 - Committer publishes (*m*, *r*).
 - Verifier checks whether com = Commit(params, m; r). If so, they accept; if not, they reject.

The definition of hiding resembles CPA security.

Hiding-Game(n, A):

- The challenger samples params $\leftarrow \text{Gen}(1^n)$ and sends params to the adversary \mathcal{A} .
- **2** \mathcal{A} outputs two messages $m_0, m_1 \in \mathcal{M}$.
- **③** The challenger samples $b \leftarrow \{0, 1\}$ and computes:

```
com^* \leftarrow Commit(params, m_b)
```

They send com^{*} to \mathcal{A} .

A outputs a guess b' for b. The output of the game is 1 if b' = b and 0 otherwise.

The commitment scheme is **computationally hiding** (a.k.a. **hiding**) if for any PPT adversary A,

$$\mathsf{Pr}[\mathsf{Hiding} ext{-}\mathsf{Game}(n,\mathcal{A}) o 1] \leq rac{1}{2} + \mathsf{negl}(n)$$

The commitment scheme is **statistically hiding** if for any adversary \mathcal{A} *running in unbounded time*,

$$\mathsf{Pr}[\mathsf{Hiding}\operatorname{-}\mathsf{Game}(n,\mathcal{A}) \to 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

The definition of binding resembles collision-resistance.

Binding-Game(n, A):

- The challenger samples params $\leftarrow \text{Gen}(1^n)$ and sends params to the adversary \mathcal{A} .
- 2 \mathcal{A} outputs two pairs (m_0, r_0) and (m_1, r_1) , where $m_0, m_1 \in \mathcal{M}$.
- ${f 0}$ The output of the game is 1 if $m_0
 eq m_1$, and

 $Commit(params, m_0; r_0) = Commit(params, m_1; r_1)$

Otherwise, the output of the game is 0.

The commitment scheme satisfies **computational binding** (a.k.a. **binding**) if for any PPT adversary A,

 $\Pr[\mathsf{Binding}\text{-}\mathsf{Game}(n,\mathcal{A}) \to 1] \leq \mathsf{negl}(n)$

The commitment scheme satisfies **statistical binding** if for any adversary \mathcal{A} running in unbounded time,

 $\Pr[\mathsf{Binding}\text{-}\mathsf{Game}(n,\mathcal{A}) \to 1] \leq \mathsf{negl}(n)$

- By default, "hiding" refers to computational hiding, and "binding" refers to computational binding.
- No commitment scheme can be both statistically hiding and statistically binding.

The following construction uses a PRG to construct a commitment scheme.

Let
$$G : \{0,1\}^n \to \{0,1\}^{3n}$$
 be a PRG. Let $m \in \{0,1\} = \mathcal{M}$.
Gen (1^n) : Sample $s \leftarrow \{0,1\}^{3n}$ and output params $= s$.
Commit(params, $m; r$): Let $r \leftarrow \{0,1\}^n$. Compute

$$\operatorname{com} = G(r) \oplus (m \cdot s)$$

Prove that this construction satisfies computational hiding and statistical binding.

¹Adapted from the fall 2019 final exam, question 2.2.

Theorem

The scheme is computationally hiding.

Proof:

- Intuition: This follows from the PRG security of *G*.
- Overview: Assume toward contradiction that there exists a PPT adversary A that can break hiding. Then we will use A to construct an adversary B that breaks the PRG security of G. This is a contradiction because B is a secure PRG. Therefore, there is not actually a PPT adversary A that can break hiding, so the commitment scheme is computationally hiding.

Construction of \mathcal{B} :

- Pseudorandom Case: The PRG challenger samples $r \leftarrow \{0,1\}^n$ and sends g = G(r) to \mathcal{B} .
 - **2** Truly Random Case: The PRG challenger samples $g \leftarrow \{0,1\}^{3n}$ and sends g to \mathcal{B} .
- **2** \mathcal{B} chooses $m_0 = 0$ and $m_1 = 1$ and then samples $b \leftarrow \{0, 1\}$.

 $\bigcirc \mathcal{B}$ computes

$$\mathsf{com}^* = g \oplus (m_b \cdot s)$$

and sends com^{*} to \mathcal{A} .

A outputs a guess b' for b. B checks whether b = b'. If so, B outputs 0. If not, B outputs 1.

Pseudorandom Case: If g = G(r) for some random r ← {0,1}ⁿ, then B simulates the hiding security game for the commitment scheme. In this case,

$$\Pr[b = b'] = \Pr[\mathsf{Hiding}\operatorname{-Game}(n, \mathcal{A}) \to 1] \geq \frac{1}{2} + \mathsf{non-negl}(n)$$

2 Truly Random Case: If $g \leftarrow \{0,1\}^{3n}$, then com^{*} is independent of *b*. com^{*} is basically a one-time pad ciphertext. In this case:

$$\Pr[b=b']=\frac{1}{2}$$

In summary, $\mathcal B$ breaks the PRG security of G because:

$$\Pr[\mathcal{B} o 0| \mathsf{Pseudorandom Case}] - \Pr[\mathcal{B} o 0| \mathsf{Truly Random Case}]$$

 $\geq rac{1}{2} + \mathsf{non-negl}(n) - rac{1}{2}$
 $\geq \mathsf{non-negl}(n)$

Q.E.D.

Theorem

The scheme is statistically binding.

Proof:

• If the adversary can break binding, then they can find two openings $(0, r_0)$ and $(1, r_1)$ such that

$$G(r_0) = G(r_1) \oplus s$$

② This is only possible if there exist values $(r_0, r_1) \in \{0, 1\}^n \times \{0, 1\}^n$ such that $G(r_0) \oplus G(r_1) = s$.

() Let T be the set of all the values that $G(r_0) \oplus G(r_1)$ can take:

- $\mathcal{T} = \{t \in \{0,1\}^{3n} : \exists (r_0, r_1) \in \{0,1\}^n \times \{0,1\}^n \text{ s.t. } t = \mathcal{G}(r_0) \oplus \mathcal{G}(r_1)\}$
- |T| ≤ 2²ⁿ because there are at most 2²ⁿ values of (r₀, r₁).
 Finally, s is sampled uniformly at random from {0,1}³ⁿ. Therefore,

$$\Pr[s \in T] = \frac{|T|}{2^{3n}} \le \frac{2^{2n}}{2^{3n}} = 2^{-n} = \operatorname{negl}(n)$$

 If s ∉ T, then no adversary, even a computationally unbounded one, can break binding.

Over the randomness of s, the probability that a computationally unbounded adversary can break binding is $\leq 2^{-n} = \operatorname{negl}(n)$. Therefore, the commitment scheme satisfies statistical binding.

Q.E.D.

Table of Contents

Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

- A (t, n) threshold secret sharing scheme allows one to split a secret s into n pieces so that one will need at least t shares to reconstruct s.
- A dealer takes s as input and uses a sharing algorithm to split the secret s into parts s_1, \ldots, s_n to be given to parties P_1, \ldots, P_n .
- Correctness: Any t parties can reconstruct s.
- Security: No collusion of < t parties can reconstruct s.

A (t, n)-secret sharing scheme (Share, Reconstruct) is defined as follows.

- Share(s): On input a secret s it outputs shares s_1, \ldots, s_n .
- **Reconstruct**($\{s_i\}_{i \in T}$): Outputs *s* or \perp .
- Correctness: For any T such that $|T| \ge t$ and secret s we have that Reconstruct $(\{s_i\}_{i \in T}) = s$.
- Security: For any T such that |T| < t, secrets s, s' and adversary A we have that p = p' where

$$p = \Pr[A(\{s_i\}_{i \in T}) = 1 \mid (s_1, \dots, s_n) \leftarrow \text{Share}(s)],$$

$$p' = \Pr[A(\{s'_i\}_{i \in T}) = 1 \mid (s'_1, \dots, s'_n) \leftarrow \text{Share}(s')].$$

How can you secret-share among n parties and reconstruct using only a threshold t of n?

Main Idea: Remember polynomial interpolation from CS 70? This is literally that. To share $s \in \mathbb{Z}_q$: choose a random degree t - 1 polynomial p(x) such that p(0) = s. Give out the shares $(p(1), \ldots, p(n))$.

• Given t shares, we can reconstruct p(x), and can then recover p(0).

Sharing:

• Given a secret $s \in \mathbb{Z}_q$, choose $p(x) = s + a_1x + \cdots + a_{t-1}x^{t-1}$, where a_i 's are chosen randomly in \mathbb{Z}_q . Give out the shares $(p(1), \ldots, p(n))$.

Reconstruct:

• Given t values $(i_1, p(i_1)), \ldots, (i_t, p(i_t))$, reconstruct p and output p(0).

Table of Contents

Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH

3 Signatures

- 4 Commitment Schemes
- 5 Secret Sharing
- 6 Proof Systems

Proof systems: Syntax

A proof system is an interactive protocol between a Prover and Verifier. Prover wants to convince Verifier of the truth of some statement.

- Prover has access to the instance x and witness w such that C(x, w) = 1.
- Verifier only has the instance x and outputs 0/1 at the end of the interaction depending on if it is convinced by the prover.

Three main properties:

- **Completeness**: If Prover is honest, Verifier always (or with overwhelming probability) outputs 1.
- **Soundness**: If Prover is cheating (i.e., the statement is actually false and no witness exists), Verifier must output 1 only with negligible probability.
- Zero-Knowledge: If Prover is honest (follows the protocol), no (cheating) Verifier can gain any information about the witness from the interaction.

Soundness: Cheating prover vs Honest verifier

- Building sound protocols: Most protocols usually have a randomized step where the verifier sends a random element. Honest provers will always be able to answer for any random element, but a cheating prover will only be able to answer for a very small (read negligible) set of random values – has to hope that the verifier chooses one of those values at random.
- General proof structure (to prove soundness): Suppose the statement is false and the verifier accepts the proof (outputs 1) with non-negligible probability. Then, break some assumption / show that the statement is true which is a contradiction hence the verifier cannot accept the proof with non-negligible probability. QED.

Zero-Knowledge: Honest prover vs Cheating verifier

- Definition: ∃Sim such that for all V* and honest prover P(x, w), the view of the verifier in the interaction with P(x, w) and the output of Sim^{V*}(x) are indistinguishable to any PPT distinguisher.
 - What the verifier sees in a honest interaction can be simulated without knowing the witness, hence contains "zero knowledge" about the witness.
- *Building ZK protocols*: What the verifier sees should not contain any information about the witness all messages should be blinded with some randomness.
- General proof structure: Construct a simulator that generates a transcript of the interaction without the witness. Can run V* multiple times, can sample things out of order. Then, show that the distributions are either identical or computationally indistinguishable.

Q: Come up with a ZKP for Quadratic Residuosity: Consider a modulus m and a w such that $x = w^2 \mod m$. The instance is (x, m) and the witness is the square root of $x \mod m$.

Hint: This is also a three round protocol similar to other protocols you have seen. We only want soundness 1/2 – we can use soundness amplification to make it negligible.

Construction:

- The prover samples a random $r \in \mathbb{Z}$ and sends $a = r^2 \mod m$ to the verifier.
- **2** The verifier samples a random bit $b \leftarrow \{0,1\}$ and sends it.
- **③** The prover sends $z = w^b \cdot r \mod m$ to the verifer.
- Verifier accepts if $z^2 = x^b a \mod m$.

Proof systems: Practice problem - Properties

Correctness:

$$z^2 = w^{2b}r^2 = x^b a \mod m$$

Soundness: Suppose there does not exist a square root of x. For the prover to succeed with probability > 1/2, the prover should be able to pass the check for both b = 0 and b = 1 for some choice of first message a. If both checks pass, notice that

$$z_1^2 = a \mod m$$
$$z_2^2 = xa \mod m$$
$$\implies \left(\frac{z_2}{z_1}\right)^2 = x \mod m$$

which is a contradiction.

Zero-Knowledge: Idea = Prover can always answer correctly if they know what bit the verifier would pick before they send the first message. The simulator works like that of Graph Isomorphism (Disc 11).

- Sim samples a random bit b', samples a random z mod m and computes $a = \frac{z^2}{x^{b'}}$ as the first message.
- Sim runs V* with a as the first message. If the second message from V* is the same as b', send z in the third step. Else go to step 1 and start over.

In expectation, Sim will need two tries to succeed as V^* 's view is independent of b' after the first message.

alice