
Final Exam Review Session
CS 171

April 30, 2024

CS 171 1 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 2 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 3 / 53

IBE: Syntax

(Similar high-level syntax and properties as other encryption schemes
we’ve seen earlier like SKE/PKE)

Setup(1λ)→ (msk ,mpk).

KeyGen(msk , ID)→ skID

Enc(mpk , ID,m)→ ct

Dec(skID, ct)→ m

Properties:

Correctness: Dec(skID,Enc(mpk , ID,m))→ m

CPA Security – slightly different game compared to CPA security in
SKE/PKE

CS 171 4 / 53

IBE: CPA Security Game

1 Challenger runs Setup(1λ)→ (msk ,mpk) and sends mpk to the
adversary.

2 Keygen Queries: Phase 1 Adversary sends ID to the challenger and
gets back skID ← KeyGen(msk , ID) corresponding to the ID.

3 Challenge phase: Adversary sends a ID∗ that was not queried as
well as messages m0 ̸= m1.

4 Challenger picks b ← {0, 1} and returns cb ← Enc(mpk , ID∗,mb).

5 Keygen Queries: Phase 2 Adversary sends ID to the challenger and
gets back skID ← KeyGen(msk , ID) corresponding to the ID (ID∗ not
allowed).

6 Adversary outputs a guess b′ for b.

CS 171 5 / 53

IBE: Tips

The adversary has the power to choose which ID to use for the
challenge phase, unlike in SKE/PKE, where the public key for
encryption is fixed at the very beginning.

KeyGen does what is designed to be hard to do in SKE/PKE – it
computes a secret key for an ID given a public key (How? Using
additional secret information msk).

For questions: Most reductions will look similar to CPA security of
SKE/PKE – make sure the adversaries receive the right answers to
queries and that the ciphertext distribution is correct.

Additional complexity: Need to take care of KeyGen queries.

CS 171 6 / 53

IBE: Practice problem

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme
(S ,K ,E ,D), construct a CPA-secure PKE scheme (Gen,Enc ,Dec).

Gen(1λ): Run S(1λ)→ (msk ,mpk) and return sk = msk , pk = mpk.

Enc(pk,m): Sample a random ID and run E (mpk , ID,m)→ ct.
Output (ID, ct) as the ciphertext.

Dec(sk, (ID, ct)): First, derive skID for the ID and then run
Dec(skID , ct)→ m.

CS 171 7 / 53

IBE: Practice problem

Show that IBE implies PKE, i.e., given a CPA-secure IBE scheme
(S ,K ,E ,D), construct a CPA-secure PKE scheme (Gen,Enc ,Dec).

Gen(1λ): Run S(1λ)→ (msk ,mpk) and return sk = msk , pk = mpk.

Enc(pk,m): Sample a random ID and run E (mpk , ID,m)→ ct.
Output (ID, ct) as the ciphertext.

Dec(sk, (ID, ct)): First, derive skID for the ID and then run
Dec(skID , ct)→ m.

CS 171 7 / 53

IBE: Practice problem - Properties

Correctness: follows from correctness of IBE.

CPA security: Suppose PKE was not CPA-secure. Let A be an adversary
that wins in the CPA game for PKE. We’ll build an adversary B to break
CPA security of IBE.

IBE challenger runs S(1λ)→ (msk ,mpk) and gives mpk to B. B
sends it to A as pk.

A outputs two challenge messages m0,m1.

B samples a random ID and sends (ID,m0,m1) to the IBE challenger.

The IBE challenger chooses random b = 0/1 and returns
c = E (mpk , ID,mb).

B sends (ID, c) to A and outputs whatever A outputs.

We did not need to make any keygen queries!

CS 171 8 / 53

IBE: Practice problem - Properties

Correctness: follows from correctness of IBE.

CPA security: Suppose PKE was not CPA-secure. Let A be an adversary
that wins in the CPA game for PKE. We’ll build an adversary B to break
CPA security of IBE.

IBE challenger runs S(1λ)→ (msk ,mpk) and gives mpk to B. B
sends it to A as pk.

A outputs two challenge messages m0,m1.

B samples a random ID and sends (ID,m0,m1) to the IBE challenger.

The IBE challenger chooses random b = 0/1 and returns
c = E (mpk , ID,mb).

B sends (ID, c) to A and outputs whatever A outputs.

We did not need to make any keygen queries!

CS 171 8 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 9 / 53

Groups: Syntax

A group G is a set with a binary operation · satisfying the following
properties:

Closure ∀g , h ∈ G , we have that g · h ∈ G .

Identity existence ∃i ∈ G such that ∀g ∈ G , g · i = g = i · g .
Inverse existence ∀g ∈ G , ∃h ∈ G such that g · h = i = h · g .
Associativity ∀g1, g2, g3 ∈ G , we have that (g1 · g2) · g3 = g1 · (g2 · g3).

CS 171 10 / 53

Groups: Properties

1 Let G be a finite group with order m, Then:

for any element g ∈ G , we have gm = 1.
for any element g ∈ G and integer x , g x = g x mod m.

2 A group G is cyclic if ∃g ∈ G such that {g1, . . . , gm} = G .

If G is a group of prime order p, then G is cyclic and every element
except the identity is a generator of G .

CS 171 11 / 53

The Discrete-Log Problem

1 Let G(1n) be a PPT algorithm generating the description of a cyclic
group of order q (q = |G | ≈ 2n) and a generator g .

2 Note that:

We can represent each group element with a unique bit representation
of size log2(n).
The group operation (addition) can be performed in time poly(n).
Sampling a group element uniformly at random can be performed in
time poly(n) (given randomness).

3 I.e., we can sample a random element x ∈ Zq and compute g x in
time poly(n).

CS 171 12 / 53

The Discrete-Log Game

DLogA,G(n)

1 Run G(1n) to obtain (G , g , q).

2 Sample uniform h ∈ G .

3 A is given (G , g , q, h) and it outputs x .

4 Output 1 if g x = h and 0 otherwise.

We say that the Discrete-Log Problem is hard relative to G if ∀ PPT
adversaries A, ∃ function negl(·) such that

|Pr[DLogA,G(n) = 1]| ≤ negl(n).

CS 171 13 / 53

The Diffie-Hellman Problems

Two main forms:

1 Computational Diffie-Hellman Problem (CDH): given ga and gb,
adversary needs to compute gab to win the game.

2 Decisional Diffie-Hellman Problem (DDH): given ga and gb,
adversary needs to distinguish gab from a random group element to
win the game.

CS 171 14 / 53

The Computational Diffie-Hellman Game

CDHA,G(n)

1 Run G(1n) to obtain (G , g , q).

2 Sample uniform a, b ∈ Z∗q.
3 A is given (G , g , q, ga, gb) and it outputs h.

4 Output 1 if gab = h and 0 otherwise.

We say that the CDH Problem is hard relative to G if ∀ PPT adversaries
A, ∃ function negl(·) such that

|Pr[CDHA,G(n) = 1]| ≤ negl(n).

CS 171 15 / 53

The Decisional Diffie-Hellman Game

DDHA,G(n)

1 Run G(1n) to obtain (G , g , q).

2 Sample uniform a, b, r ∈ Z∗q. Sample a uniform bit c ∈ {0, 1}.
3 A is given (G , g , q, ga, gb, gab+cr) and it outputs c ′.

4 Output 1 if c = c ′ and 0 otherwise.

We say that the DDH Problem is hard relative to G if ∀ PPT adversaries
A, ∃ function negl(·) such that

|Pr[DDHA,G(n) = 1]| ≤ 1

2
+ negl(n).

CS 171 16 / 53

Bilinear Groups

1 “Groups where CDH is hard, but DDH is easy”

2 Consider a group G of prime order q and generator g :
3 We get a pairing operation e such that:

e : G × G → GT

If g is a generator of G then e(g , g) is a generator of GT

∀a, b ∈ Z∗
q, e(g

a, gb) = e(g , g)ab

4 Intuition:

DDH is easy because if A,B,C is a DDH tuple, we can check
e(A,B) = e(g ,C)
CDH is hard because... no attacks are known.

CS 171 17 / 53

The Decisional Bilinear Diffie-Hellman Game

DBDHA,G(n)

1 Run G(1n) to obtain (G ,GT , g , q, e(·, ·)).
2 Sample uniform a, b, c, r ∈ Z∗q. Sample a uniform bit β ∈ {0, 1}.
3 A is given (G ,GT , g , q, g

a, gb, g c , e(g , g)abc+βr) and it outputs β′.

4 Output 1 if β = β′ and 0 otherwise.

We say that the DBDH Problem is hard relative to G if ∀ PPT adversaries
A, ∃ function negl(·) such that

|Pr[DBDHA,G(n) = 1]− 1

2
| ≤ negl(n).

CS 171 18 / 53

Relationships Between (Hard) Problems

From Weakest (Easiest) to Strongest (Hardest):

DDH =⇒ CDH =⇒ DLog =⇒ CRHF =⇒ OWF

CDH =⇒ DBDH

CS 171 19 / 53

Relationships Between (Hard) Problems Continued

CDH =⇒ DLog:

1 Want to show that if computing x from g x in G was easy, then so is
computing gab from ga and gb in G .

2 Given (G , g , q, ga, gb), run ADlog on ga to get a. Compute
(gb)a = gab.

3 This approach wins with the same probability that ADlog solves the
Dlog instance (non-negl).

DDH =⇒ CDH:

1 Want to show that if computing gab from ga and gb in G was easy,
then so is distinguishing DDH triples.

2 Given (G , g , q, ga, gb, gab+cr), run ACDH on ga and gb to get gab

and check if it equals gab+cr .

3 This approach wins the DDH game with non-negl probability.

CS 171 20 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 21 / 53

Signatures: Syntax

Gen(1n): Outputs public key and secret key pair (pk, sk).

Signsk(m): Outputs a signature σ on the message m.

Vrfypk(m, σ): Outputs 0/1.

Correctness: For all n, except for negligible choices of (pk, sk), it holds
that for all m, Vrfypk(m,Signsk(m)) = 1.

CS 171 22 / 53

Signatures: Unforgeability Security Game

The task of the adversary is essentially to forge a valid signature, which
successfully verifies, without having the secret key.

ForgeA,Π(1
n)

1 Sample (pk, sk)← Gen(1n).

2 Let (m∗, σ∗) be the output of Signsk(·) by adversary A(pk). Let M
be the list of queries A makes.

3 Output 1 if Vrfypk(m
∗, σ∗) = 1 ∧m∗ /∈ M and 0 otherwise.

Π = (Gen,Sign,Vrfy) is existentially unforgeable under adaptive chosen
message attack if ∀ probabilistic polynomial time (PPT) adversary A, it
holds that:

Pr[ForgeA,Π = 1] ≤ negl(n)

CS 171 23 / 53

Signatures: Practice Problem, Spring 2021 Final

Let (Gen,Sign,Vrfy) be a perfectly correct secure digital signature
scheme. Perfect correctness states that for any message m,

Pr
rGen,rSign←{0,1}n,(vk,sk):=Gen(1n;rGen)

[Vrfy(vk ,m, Sign(sk,m; rSign)) = 1] = 1,

where rGen are the random coins used by Gen and rSign are the random
coins used by Sign. Define f (x) to output the verification key vk output
by Gen(1n; x). Show that f is a one-way function.

CS 171 24 / 53

Signatures: Practice Problem Solution

If there exists a probabilistic polynomial time (PPT) A that can invert f
with non-negligible probability, then we can construct a PPT B that
breaks the security of the signature scheme:

1 B gets pk from its challenger and forwards it to A.

2 A outputs x ′ such that f (x ′) = pk .

3 B computes (pk, sk ′) := Gen(1n; x ′).

4 B picks an arbitrary message m and computes σ ← Signsk ′(m).

5 Since (pk, sk ′) is generated from Gen, σ is a valid signature for m
with respect to pk. Hence B breaks the security of the signature
scheme with non-negligible probability.

CS 171 25 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 26 / 53

Commitment Scheme Syntax

1 Gen(1n)→ params

2 Commit(params,m; r) = com

M is the message space, and m ∈M.
Other notation: Commit(params,m)→ com

3 Open: Committer publishes m and proves that com is a commitment
to m. The verifier decides whether to accept or reject the proof.

Canonical Opening Procedure:

Committer publishes (m, r).
Verifier checks whether com = Commit(params,m; r). If so, they
accept; if not, they reject.

CS 171 27 / 53

Hiding Definition

The definition of hiding resembles CPA security.

Hiding-Game(n,A):
1 The challenger samples params← Gen(1n) and sends params to the

adversary A.
2 A outputs two messages m0,m1 ∈M.

3 The challenger samples b ← {0, 1} and computes:

com∗ ← Commit(params,mb)

They send com∗ to A.
4 A outputs a guess b′ for b. The output of the game is 1 if b′ = b and

0 otherwise.

CS 171 28 / 53

Hiding Definition

The commitment scheme is computationally hiding (a.k.a. hiding) if for
any PPT adversary A,

Pr[Hiding-Game(n,A)→ 1] ≤ 1

2
+ negl(n)

The commitment scheme is statistically hiding if for any adversary A
running in unbounded time,

Pr[Hiding-Game(n,A)→ 1] ≤ 1

2
+ negl(n)

CS 171 29 / 53

Binding Definition

The definition of binding resembles collision-resistance.

Binding-Game(n,A):
1 The challenger samples params← Gen(1n) and sends params to the

adversary A.
2 A outputs two pairs (m0, r0) and (m1, r1), where m0,m1 ∈M.

3 The output of the game is 1 if m0 ̸= m1, and

Commit(params,m0; r0) = Commit(params,m1; r1)

Otherwise, the output of the game is 0.

CS 171 30 / 53

Binding Definition

The commitment scheme satisfies computational binding (a.k.a.
binding) if for any PPT adversary A,

Pr[Binding-Game(n,A)→ 1] ≤ negl(n)

The commitment scheme satisfies statistical binding if for any adversary
A running in unbounded time,

Pr[Binding-Game(n,A)→ 1] ≤ negl(n)

CS 171 31 / 53

Notes

By default, “hiding” refers to computational hiding, and “binding”
refers to computational binding.

No commitment scheme can be both statistically hiding and
statistically binding.

CS 171 32 / 53

Commitment Scheme Practice Problem1

The following construction uses a PRG to construct a commitment
scheme.

Let G : {0, 1}n → {0, 1}3n be a PRG. Let m ∈ {0, 1} =M.

1 Gen(1n) : Sample s ← {0, 1}3n and output params = s.

2 Commit(params,m; r) : Let r ← {0, 1}n. Compute

com = G (r)⊕ (m · s)

Prove that this construction satisfies computational hiding and statistical
binding.

1Adapted from the fall 2019 final exam, question 2.2.
CS 171 33 / 53

Commitment Scheme Practice Problem: Hiding

Theorem

The scheme is computationally hiding.

Proof:

1 Intuition: This follows from the PRG security of G .

2 Overview: Assume toward contradiction that there exists a PPT
adversary A that can break hiding. Then we will use A to construct
an adversary B that breaks the PRG security of G . This is a
contradiction because B is a secure PRG. Therefore, there is not
actually a PPT adversary A that can break hiding, so the
commitment scheme is computationally hiding.

CS 171 34 / 53

Commitment Scheme Practice Problem: Hiding

Construction of B:
1 1 Pseudorandom Case: The PRG challenger samples r ← {0, 1}n and

sends g = G (r) to B.
2 Truly Random Case: The PRG challenger samples g ← {0, 1}3n and

sends g to B.
2 B chooses m0 = 0 and m1 = 1 and then samples b ← {0, 1}.
3 B computes

com∗ = g ⊕ (mb · s)

and sends com∗ to A.
4 A outputs a guess b′ for b. B checks whether b = b′. If so, B

outputs 0. If not, B outputs 1.

CS 171 35 / 53

Commitment Scheme Practice Problem: Hiding

1 Pseudorandom Case: If g = G (r) for some random r ← {0, 1}n, then
B simulates the hiding security game for the commitment scheme. In
this case,

Pr[b = b′] = Pr[Hiding-Game(n,A)→ 1] ≥ 1

2
+ non-negl(n)

2 Truly Random Case: If g ← {0, 1}3n, then com∗ is independent of b.
com∗ is basically a one-time pad ciphertext. In this case:

Pr[b = b′] =
1

2

CS 171 36 / 53

Commitment Scheme Practice Problem: Hiding

In summary, B breaks the PRG security of G because:

Pr[B → 0|Pseudorandom Case]− Pr[B → 0|Truly Random Case]

≥ 1

2
+ non-negl(n)− 1

2
≥ non-negl(n)

Q.E.D.

CS 171 37 / 53

Commitment Scheme Practice Problem: Binding

Theorem

The scheme is statistically binding.

Proof:

1 If the adversary can break binding, then they can find two openings
(0, r0) and (1, r1) such that

G (r0) = G (r1)⊕ s

2 This is only possible if there exist values (r0, r1) ∈ {0, 1}n × {0, 1}n
such that G (r0)⊕ G (r1) = s.

CS 171 38 / 53

Commitment Scheme Practice Problem: Binding

1 Let T be the set of all the values that G (r0)⊕ G (r1) can take:

T = {t ∈ {0, 1}3n : ∃(r0, r1) ∈ {0, 1}n×{0, 1}n s.t. t = G (r0)⊕G (r1)}

2 |T | ≤ 22n because there are at most 22n values of (r0, r1).

3 Finally, s is sampled uniformly at random from {0, 1}3n. Therefore,

Pr[s ∈ T] =
|T |
23n
≤ 22n

23n
= 2−n = negl(n)

4 If s /∈ T , then no adversary, even a computationally unbounded one,
can break binding.

CS 171 39 / 53

Commitment Scheme Practice Problem: Binding

Over the randomness of s, the probability that a computationally
unbounded adversary can break binding is ≤ 2−n = negl(n). Therefore,
the commitment scheme satisfies statistical binding.

Q.E.D.

CS 171 40 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 41 / 53

Secret Sharing: Concept

A (t, n) threshold secret sharing scheme allows one to split a secret s
into n pieces so that one will need at least t shares to reconstruct s.

A dealer takes s as input and uses a sharing algorithm to split the
secret s into parts s1, . . . , sn to be given to parties P1, . . . ,Pn.

Correctness: Any t parties can reconstruct s.

Security: No collusion of < t parties can reconstruct s.

CS 171 42 / 53

Secret-Sharing: Definition

A (t, n)-secret sharing scheme (Share, Reconstruct) is defined as follows.

Share(s): On input a secret s it outputs shares s1, . . . , sn.

Reconstruct({si}i∈T): Outputs s or ⊥.
Correctness: For any T such that |T | ≥ t and secret s we have that
Reconstruct({si}i∈T) = s.

Security: For any T such that |T | < t, secrets s, s ′ and adversary A
we have that p = p′ where

p = Pr[A({si}i∈T) = 1 | (s1, . . . , sn)← Share(s)],

p′ = Pr[A({s ′i}i∈T) = 1 | (s ′1, . . . , s ′n)← Share(s ′)].

CS 171 43 / 53

Secret-Sharing: Practice Problem

How can you secret-share among n parties and reconstruct using only a
threshold t of n?

CS 171 44 / 53

Secret-Sharing: Solution, Shamir’s

Main Idea: Remember polynomial interpolation from CS 70? This is
literally that. To share s ∈ Zq: choose a random degree t − 1 polynomial
p(x) such that p(0) = s. Give out the shares (p(1), . . . , p(n)).

Given t shares, we can reconstruct p(x), and can then recover p(0).

Sharing:

Given a secret s ∈ Zq, choose p(x) = s + a1x + · · ·+ at−1x
t−1, where

ai ’s are chosen randomly in Zq. Give out the shares (p(1), . . . , p(n)).

Reconstruct:

Given t values (i1, p(i1)), . . . , (it , p(it)), reconstruct p and output
p(0).

CS 171 45 / 53

Table of Contents

1 Identity-Based Encryption

2 Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH,
DBDH

3 Signatures

4 Commitment Schemes

5 Secret Sharing

6 Proof Systems

CS 171 46 / 53

Proof systems: Syntax

A proof system is an interactive protocol between a Prover and Verifier.
Prover wants to convince Verifier of the truth of some statement.

Prover has access to the instance x and witness w such that
C (x ,w) = 1.

Verifier only has the instance x and outputs 0/1 at the end of the
interaction depending on if it is convinced by the prover.

Three main properties:

Completeness: If Prover is honest, Verifier always (or with
overwhelming probability) outputs 1.

Soundness: If Prover is cheating (i.e., the statement is actually false
and no witness exists), Verifier must output 1 only with negligible
probability.

Zero-Knowledge: If Prover is honest (follows the protocol), no
(cheating) Verifier can gain any information about the witness from
the interaction.

CS 171 47 / 53

Proof systems: Properties and Tips

Soundness: Cheating prover vs Honest verifier

Building sound protocols: Most protocols usually have a randomized
step where the verifier sends a random element. Honest provers will
always be able to answer for any random element, but a cheating
prover will only be able to answer for a very small (read negligible) set
of random values – has to hope that the verifier chooses one of those
values at random.

General proof structure (to prove soundness): Suppose the statement
is false and the verifier accepts the proof (outputs 1) with
non-negligible probability. Then, break some assumption / show that
the statement is true – which is a contradiction – hence the verifier
cannot accept the proof with non-negligible probability. QED.

CS 171 48 / 53

Proof systems: Zero-Knowledge

Zero-Knowledge: Honest prover vs Cheating verifier

Definition: ∃Sim such that for all V ∗ and honest prover P(x ,w), the
view of the verifier in the interaction with P(x ,w) and the output of
SimV ∗

(x) are indistinguishable to any PPT distinguisher.

What the verifier sees in a honest interaction can be simulated without
knowing the witness, hence contains “zero knowledge” about the
witness.

Building ZK protocols: What the verifier sees should not contain any
information about the witness – all messages should be blinded with
some randomness.

General proof structure: Construct a simulator that generates a
transcript of the interaction without the witness. Can run V ∗ multiple
times, can sample things out of order. Then, show that the
distributions are either identical or computationally indistinguishable.

CS 171 49 / 53

Proof systems: Practice problem

Q: Come up with a ZKP for Quadratic Residuosity: Consider a modulus m
and a w such that x = w2 mod m. The instance is (x ,m) and the
witness is the square root of x mod m.

Hint: This is also a three round protocol similar to other protocols you
have seen. We only want soundness 1/2 – we can use soundness
amplification to make it negligible.

CS 171 50 / 53

Proof systems: Practice problem - Construction

Construction:

1 The prover samples a random r ∈ Z and sends a = r2 mod m to the
verifier.

2 The verifier samples a random bit b ← {0, 1} and sends it.

3 The prover sends z = wb · r mod m to the verifer.

4 Verifier accepts if z2 = xba mod m.

CS 171 51 / 53

Proof systems: Practice problem - Properties

Correctness:

z2 = w2br2 = xba mod m

Soundness: Suppose there does not exist a square root of x . For the
prover to succeed with probability > 1/2, the prover should be able to
pass the check for both b = 0 and b = 1 for some choice of first message
a. If both checks pass, notice that

z21 = a mod m

z22 = xa mod m

=⇒
(
z2
z1

)2

= x mod m

which is a contradiction.

CS 171 52 / 53

Proof systems: Practice problem - Properties

Zero-Knowledge: Idea = Prover can always answer correctly if they know
what bit the verifier would pick before they send the first message.
The simulator works like that of Graph Isomorphism (Disc 11).

1 Sim samples a random bit b′, samples a random z mod m and
computes a = z2

xb′
as the first message.

2 Sim runs V ∗ with a as the first message. If the second message from
V ∗ is the same as b′, send z in the third step. Else go to step 1 and
start over.

In expectation, Sim will need two tries to succeed as V ∗’s view is
independent of b′ after the first message.

CS 171 53 / 53

	Identity-Based Encryption
	Group-Based Assumptions and Bilinear Maps: DLOG, CDH, DDH, DBDH
	Signatures
	Commitment Schemes
	Secret Sharing
	Proof Systems

