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MAC: The Concept

So far in the class, we’ve precisely defined confidentiality for end-to-end
encrypted messaging with symmetric-key encryption.

But how can we guarantee the integrity of a ciphertext?

A Message Authentication Codes (MAC) is a keyed checksum, which is
sent along with the message. It takes in a fixed-length secret key and an
arbitrary-length message, and outputs a fixed-length checksum. A secure
MAC has the property that any change to the message will render the
checksum invalid.
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MAC: Definition

A MAC scheme consists of 3 PPT algorithms (Gen, MAC, Verify):

Gen(1n): Outputs a key k .

MACk(m): Outputs a tag t.

Verifyk(m, t): Outputs 0/1.

These satisfy 2 properties:

1 Correctness: ∀n, k ← Gen(1n), ∀m ∈ {0, 1}∗, we have that
Verifyk(m,MACk(m)) = 1.

2 Security: Verifyk(m, t) outputs 1 if and only if MACk(m) = t.
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MAC: Security Game

The adversary’s goal is to forge a MAC. The adversary wins only if they
output a valid tag on a message that was never previously queried.

The game is between a challenger C and the adversary A.
MACForgeA,Π(1

n):

1 C samples k ← Gen(1n).

2 A makes MAC queries to the challenger. Let M be the list of queries
A makes.

3 Finally, A outputs (m∗, t∗).

4 C outputs 1 if Verify(m∗, t∗) = 1 ∧m∗ /∈ M and 0 otherwise.
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MAC: Security Definition

Π = (Gen,MAC ,Verify) is existentially unforgeable under the adaptive
chosen attack if ∀ PPT A it holds that:

Pr[MACForgeA,Π = 1] ≤ negl(n)
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MAC: Tips

1 If you are asked to construct a new MAC ′ and prove its security:

Use the system from the proof workshop where your secure underlying
building block is the MAC .
Assume there is an adversary A that breaks MAC ′.
Construct an external adversary B that simulates the MACForge game
for A and uses this to break MAC . Contradiction!
Hint: B can tinker with the what it gets from A and what it forwards
from its oracle to A.

2 There can be interesting variations of unforgeability such as strong
unforgeability from Discussion 6, Q2: Adversary can win even if they
output a valid tag on a message that was previously queried.

3 You can be asked to compare the security properties of the MAC
security definition with a new primitive.

E.g. define a primitive x that is not a MAC .
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MAC: Practice Problem (Part (a))

Spring 2021 MT2 Q2

Consider a “CCA-style” extension to the definition of secure message
authentication codes, where the adversary is provided with both a MAC
and a Verify oracle. Our starting point will be the “standard” notion of
MAC security, called “existential unforgeability under adaptive
chosen-message attacks,” and we will consider a variant of this definition
that allows for Verify oracle queries.

(a) Provide a formal definition of CCA-secure MACs. That is, describe an
experiment called CCA−Mac− ForgeA,Π(n), and provide a security
requirement stating that no adversary can win your game except with
negligible probability.
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MAC: Practice Problem (Part (a) Solution)

(a) Provide a formal definition of CCA-secure MACs. That is, describe an
experiment called CCA−Mac− ForgeA,Π(n), and provide a security
requirement stating that no adversary can win your game except with
negligible probability.

1 The challenger samples k ← Gen(1n).

2 The adversary A is given input 1n and oracle access to Mack(·) and
Verifyk(·, ·). The adversary eventually outputs a pair (m, t). Let Q
denote the set of all queries that A asked to its Mack(·) oracle.

3 The output of the experiment is defined to be 1 if and only if (1)
Verifyk(m, t) = 1 and (2) m /∈ Q.

Π is a CCA-secure MAC if for all adversaries A,

Pr[CCA−Mac− ForgeA,Π(n) = 1] = negl(n).
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MAC: Practice Problem (Part (b))

(b) Assume that Π is a standard secure deterministic MAC that has
canonical verification, meaning that i) the Mac algorithm is deterministic
and ii) the Verify algorithm, on input (m, t), recomputes t ′ := Mack(m)
and accepts if t ′ = t. Prove that Π also satisfies your definition from part
(a).
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MAC: Practice Problem (Part (b) Solution)

When Π is deterministic and has canonical verification, each message has
only a single valid tag. Thus, if the scheme is secure, then access to a
Verify oracle does not help (and so Π is secure in the sense of the
definition given in part (a)). To see this, note that for any query (m, t) to
the Verify oracle there are 3 possibilities:

1 m was previously queried to the Mac oracle, and response t was
received. Here the adversary already knows that Verifyk(m, t) = 1.

2 m was previously queried to the Mac oracle, and response t ′ ̸= t was
received. Since Π is deterministic, the adversary already knows
Verifyk(m, t) = 0.

3 m was not previously queried to the Mac oracle. By security of Π, we
can argue that Verifyk(m, t) = 0 with all but negligible probability
because otherwise, m, t is a valid forgery. Let’s prove it.
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MAC: Practice Problem (Part (b) Solution Continued)

We want to show that if m was not previously queried to the Mac oracle,
by security of Π, we can argue that Verifyk(m, t) = 0 with all but
negligible probability because otherwise, m, t is a valid forgery.
Let MAC ′ be a CCA-secure MAC. Assume that Verifyk(m, t) = 1. Then
there exists an adversary A that can query a message m to the verify
oracle in the CCA-secure MAC scheme to obtain a valid MAC.
Now construct an adversary B that simulates the security game for A to
win the Π security game.
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MAC: Practice Problem (Part (b) Solution Continued)

We successfully simulate the game for A because its queries are accurately
answered. So A can produce a message that was not previously queried
such that Verifyk(m, t) = 0, then so can B. Contradiction.
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CRHF: Basic Definitions

Syntax:
Hs(x) = y

A collision in Hs is a pair (x , x ′) such that x ̸= x ′ but
Hs(x) = Hs(x ′).

H is guaranteed to have collisions. We require that |y | < |x | (H is
compressing).

If it’s hard to find those collisions, then the hash function is
collision-resistant.
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CRHF: Formal Syntax

The hash function H is a pair of algorithms: H = (Gen,H).

Gen: outputs a random key/seed s:

s ← Gen(1n)

The key is allowed to be public.

Hs : This is also sometimes referred to as the hash function.
The output length – and sometimes the input length – are fixed.
Hs is deterministic.
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CRHF: Security Game

Summary: The adversary is given s and a description of H, and they
try to find a collision in Hs with non-negligible probability.

Hash-collA,H(n):

1 The challenger samples a key s ← Gen(1n) and gives s to the adversary
A.

2 A produces two inputs (x , x ′) to Hs .
3 A wins (and the game outputs 1) if (x , x ′) are a collision:

x ̸= x ′ and Hs(x) = Hs(x ′)

Otherwise, A loses (the game outputs 0).

Note that the adversary can compute Hs by themselves.
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CRHF: Security Definition

H is collision-resistant if for any PPT adversary A, there is a
negligible function negl such that:

Pr[Hash-collA,H(n) = 1] ≤ negl(n)
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CRHF: Tips

The adversary in the CRHF security game is given s and a description
of H, so they can compute Hs(x) on any input x of their choosing.
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CRHF: Practice Problem

Summary: The problem shows you how to reprogram a hash function
so that a given x∗ maps to a given y∗, while maintaining
collision-resistance.

Source: Midterm 2, Fall 2019, Q 5.2.b
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CRHF: Practice Problem

The problem:

Let H = (Gen,H) be a CRHF. Let x∗ belong to the domain of Hs ,
and let y∗ belong to the range of Hs .

Next, for any s ← Gen(1n):

let Hs
1(x) =


y∗ if x = x∗

Hs(x∗) if x ̸= x∗ and Hs(x) = y∗

Hs(x) otherwise

Prove that (Gen,H1) is a CRHF.
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CRHF: Practice Problem
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CRHF: Practice Problem Solution

Theorem

(Gen,H1) is a CRHF.

Proof:
Overview:

Assume toward contradiction that (Gen,H1) is not a CRHF. Then
there exists an adversary A that wins the CRHF game for H1 (by
finding a collision in H1) with non-negligible probability.

We will use A to construct an adversary B that wins the CRHF game
for H with non-negligible probability.

This is a contradiction because (Gen,H) is a CRHF. So our initial
assumption was false and (Gen,H1) is also a CRHF.
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CRHF: Practice Problem Solution

Construction of B:
1 In the CRHF game for H, the challenger samples s ← Gen(1n) and

gives s to the adversary B.
2 B will run A on input s until A produces two inputs (x , x ′).

3 B makes a list of collision candidates:

C := {(x , x ′), (x , x∗), (x ′, x∗)}

and checks whether each candidate (x1, x2) ∈ C satisfies the
conditions: x1 ̸= x2 and Hs(x1) = Hs(x2).

4 B outputs the first candidate (x1, x2) ∈ C that satisfies the conditions.

CS 171 25 / 49



CRHF: Practice Problem Solution

Note that with non-negligible probability (x , x ′) will be a collision in
Hs
1 :

x ̸= x ′ and Hs
1(x) = Hs

1(x
′)

We will prove that in this case, B will succeed in finding a collision in
Hs .
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CRHF: Practice Problem Solution
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CRHF: Practice Problem Solution

Let’s assume that (x , x ′) are a collision in Hs
1 . Then consider the following

trivial cases:

Case 1: Hs(x∗) = y∗: In this case, Hs
1 = Hs ; reprogramming the

function doesn’t do anything. If (x , x ′) are a collision in Hs
1 , then

(x , x ′) will be a collision in Hs . For the remaining cases, assume that
Hs(x∗) ̸= y∗.

Case 2: x = x∗ or x ′ = x∗: This will not happen if (x , x ′) is a
collision in Hs

1 because x∗ is the only input that Hs
1 maps to y∗.
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CRHF: Practice Problem Solution

Now consider some more-interesting cases:

Case 3: (x , x ′) ∈ A. Then

Hs(x) = y∗ = Hs(x ′)

so (x , x ′) are a collision in Hs .

Case 2: (x , x ′) ∈ B ∪ C . Then

Hs(x) = Hs
1(x) = Hs

1(x
′) = Hs(x ′)

so (x , x ′) are a collision in Hs .
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CRHF: Practice Problem Solution

Case 4: x ∈ A, x ′ ∈ B. Then

Hs(x ′) = Hs(x∗)

so (x ′, x∗) are a collision in Hs .

Case 5: x ∈ B, x ′ ∈ A. Then

Hs(x) = Hs(x∗)

so (x , x∗) are a collision in Hs .
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OWF: Definition

Syntax:
f (x) = y

A function f : {0, 1}∗ → {0, 1}∗ is one-way if

It’s easy to compute, i.e., computing f (x) runs in “probabilistic
polynomial time.”, but

It’s hard to invert, i.e., there is no “probabilistic polynomial time”
algorithm that can compute f −1(y).

Note: {0, 1}∗ → {0, 1}∗ means the input and output can be
arbitrarily long bit strings.
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OWF: Security

How can we formally define “hard to invert”?

OWF-SecA,f (n):

1 The challenger randomly samples an input x ← {0, 1}n and gives f (x)
to the adversary A along with 1n.

2 A produces a value x ′ ∈ {0, 1}n.
3 A wins (and the game outputs 1) if f (x ′) = f (x)
4 Otherwise, A loses (the game outputs 0).

The probability A wins the above game should be at most negl(n) for
f to be secure.

This can be expressed equivalently as:

Pr
x←{0,1}n

[A(1n, f (x)) ∈ f −1(f (x))] ≤ negl(n).
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OWF: Tips

OWF’s are “almost universal” in the sense that most cryptographic
primitives imply the existence of OWFs.

If a question asks you to construct a OWF from a standard-looking
primitive, you probably do it.

The only gotcha is if the given primitive is contrived, e.g.
constructing a OWF f from a PRP F as follows:

f (x0 ∥ x1) = F (x0, x1)

See discussion 8 for detail on why this example fails.
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OWF: Example Questions

Example questions: construct a one-way function from one of the
following primitives:

A PRG G : {0, 1}n/2 → {0, 1}n

a CRHF (Gen,H) where Hs : {0, 1}n → {0, 1}n/2

a one-to-one function (permutation) F : {0, 1}n → {0, 1}n with a
hard-concentrate predicate hc(·).
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OWF: Practice Problem

Question: construct a one-way function from a CRHF (Gen,H) such
that Hs : {0, 1}n → {0, 1}n/2.

We’ll prove the following theorem:

Theorem

f (s ∥ x) = s ∥ Hs(x) is a OWF.
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Proving f (s ∥ x) = s ∥ H s(x) is a OWF

Step 1: Stating our argument.

Suppose for the sake of contradiction that f is not a OWF.

This implies that there exists an adversary A that can win the
OWF-SecA,f (n) security game with nonnegl(n) probability.

We will construct an adversary B from A that wins Hash-collA,H(n)
with nonnegl(n) probability.
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Proving f (s ∥ x) = s ∥ H s(x) is a OWF

Step 2: Construction of B:
1 B is given the truly random seed s from the CRHF challenger.

2 B samples a random x ← {0, 1}n and runs A on Hs(x) to obtain x ′.

3 If x = x ′, abort.

4 Otherwise, output (x , x ′) as a collision.
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Proving f (s ∥ x) = s ∥ H s(x) is a OWF

Step 3: Analysing B:
1 We need to lower bound the probability that we don’t abort (i.e., the

probability we win).

2 First, observe that the probability our random x collides with x ′ by
chance (Hs(x) = Hs(x ′)) is upper bounded by the birthday bound,
2−n/2. Note: we have no control over the particular x ′ that A got
from inverting f (x), but the x that B sampled itself is uniformly
random, meaning that chance x = x ′ is still random even if A doesn’t
choose x ′ randomly.

3 Conditioned on the above not happening, the probability that x ̸= x ′

is at least 1/2. This follows from the fact that H takes n bits to n/2
bits, implying Pr[x = x ′] = 1

2n/2
< 1

2 .

4 Putting these two point together:

Pr [x ̸= x ′|Hs(x) = Hs(x ′)] ≥ 1

2
− 1

2n/2
.
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Proving f (s ∥ x) = s ∥ H s(x) is a OWF

Step 4: Wrapping up:

1 We proved that we don’t abort probability 1
2 −

1
2n/2

.

2 In the case that B doesn’t abort, it follows from the construction that
(x , x ′) are a valid collision.

3 Thus,

Pr[Hash-collB,H(n) = 1]

= Pr[OWF-SecA,f (n) = 1] · Pr [x ̸= x ′|Hs(x) = Hs(x ′)]

= nonnegl(n) ·
(
1

2
− 1

2−n/2

)
= nonnegl′(n)

4 In summary, given an adversary A that wins OWF-SecA,f (n) with
non-negligible probability, B wins Hash-collB,H(n) with
non-negligible probability, which is a contradiction □.
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Public Key Encryption: Definition

(The syntax and most properties are very similar to private/symmetric key
encryption that we’ve seen earlier.)

A PKE scheme consists of three PPT algorithms (Gen,Enc ,Dec) where

Gen(1n)→ (sk,pk)

Enc(pk,m)→ c

Dec(sk, c)→ m/ ⊥
and these satisfy two properties

Correctness: Dec(sk,Enc(pk,m)) = m.

Security: EAV = CPA security / CCA security
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PKE: CPA Security

Challenger samples (sk , pk)← Gen(1n) and gives pk to A.
A outputs two messages m0,m1.

Challenger samples a bit b ∈ {0, 1} and outputs Enc(pk,mb).

A outputs b′ as a guess for b.

CPA-secure if for all PPT A

Pr [b′ = b] ≤ 1

2
+ negl(n)

Intuition

Looking at the ciphertext should not reveal which message was encrypted.
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Tips

pk is given to the adversary, so no encryption oracle is needed – A
can locally encrypt whatever it wants.

sk is unknown, so decryption is not possible – CCA game for PKE
gives access to a decryption oracle to A.
Most proof techniques are similar to that of private key encryption
schemes:

Show that a certain scheme is not CPA/CCA secure – construct an
adversary for the game that is able to figure out which message was
encrypted.
Show that a certain scheme is secure – often relies on the security of
some other primitive → Proof by contradiction.
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PKE Example: El Gamal Encryption

PKE scheme based on DDH.

Gen(1n): Generate cyclic group G of order q and a generator g .
Sample x ∈ Zq and h = g x .
Output pk = (G, q, g , h), sk = x

Enc(pk,m)→ (c1, c2): Sample r ∈ Zq.
Output (c1, c2) = (g r ,m · hr )
Dec(sk, (c1, c2))→ m: Output m = c2

cx1

Correctness

Dec(sk,Enc(pk,m)) = Dec(sk, (g r ,mhr )) =
mhr

(g r )x
=

mhr

hr
= m
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Key Exchange

Consists of three randomized algorithms (P1,P2,P3):

1 Alice computes (m1, st)← P1(1
n) and sends m1 to Bob.

2 Bob computes (m2, k)← P2(m1). Then he sends m2 to Alice and
outputs k .

3 Alice computes k ← P3(st,m2) and outputs k.

Correctness: Both parties get the same key k .

Security: No eavesdropper can distinguish between (m1,m2, k) and
(m1,m2, r) where r is a random element.
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Problem: Key exchange from CPA-Secure PKE

Question

Given a PKE scheme (Gen,Enc ,Dec), construct a secure key exchange
scheme (P1,P2,P3).

Construction

P1(1
n): Run Gen(1n)→ (sk, pk). Return (m1, st) = (pk, sk).

P2(m1): Sample random r and run Enc(m1, r)→ c .
Return (m2, k) = (c , r).

P3(m2, st): Run Dec(st,m2)→ r ′ and return r .
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Solution: Key exchange from CPA-Secure PKE

By contradiction: Suppose the Key exchange scheme is not secure. Then
we have A that can distinguish (m1,m2, k) from (m1,m2, r) where r is
random.
We’ll construct B for the CPA game that distinguishes between
encryptions of m0 or m1.
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