Midterm II Review Session CS 171

March 15, 2024

- 1 Message Authentication Codes (MACs)
- 2 Collision-Resistant Hash Functions (CRHFs)
- One-Way Functions (OWFs)
- Public-Key Encryption (PKE)
- 5 Key Exchange

1 Message Authentication Codes (MACs)

- 2 Collision-Resistant Hash Functions (CRHFs)
- 3 One-Way Functions (OWFs)
- Public-Key Encryption (PKE)
- 5 Key Exchange

So far in the class, we've precisely defined confidentiality for end-to-end encrypted messaging with *symmetric-key encryption*.

But how can we guarantee the **integrity** of a ciphertext?

A Message Authentication Codes (MAC) is a keyed checksum, which is sent along with the message. It takes in a fixed-length secret key and an arbitrary-length message, and outputs a fixed-length checksum. A secure MAC has the property that any change to the message will render the checksum invalid.

A MAC scheme consists of 3 PPT algorithms (Gen, MAC, Verify):

- Gen(1ⁿ): Outputs a key k.
- $MAC_k(m)$: Outputs a tag t.
- Verify_k(m, t): Outputs 0/1.

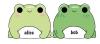
These satisfy 2 properties:

- Correctness: $\forall n, k \leftarrow Gen(1^n), \forall m \in \{0, 1\}^*$, we have that $Verify_k(m, MAC_k(m)) = 1$.
- **Security:** Verify_k(m, t) outputs 1 if and only if $MAC_k(m) = t$.

The adversary's goal is to **forge** a MAC. The adversary wins only if they output a valid tag on a message that was never previously queried.

The game is between a challenger *C* and the adversary A. MACForge_{A,Π}(1^{*n*}):

- C samples $k \leftarrow Gen(1^n)$.
- **2** \mathcal{A} makes *MAC* queries to the challenger. Let *M* be the list of queries \mathcal{A} makes.
- Simily, \mathcal{A} outputs (m^*, t^*) .
- C outputs 1 if $Verify(m^*, t^*) = 1 \land m^* \notin M$ and 0 otherwise.



 $\Pi = (Gen, MAC, Verify)$ is existentially unforgeable under the adaptive chosen attack if \forall PPT \mathcal{A} it holds that:

$$\mathsf{Pr}[\mathsf{MACForge}_{\mathcal{A},\mathsf{\Pi}}=1] \leq \mathsf{negl}(n)$$

MAC: Tips

If you are asked to construct a new *MAC* and prove its security:

- Use the system from the proof workshop where your secure underlying building block is the *MAC*.
- Assume there is an adversary A that breaks MAC'.
- Construct an external adversary \mathcal{B} that simulates the MACForge game for \mathcal{A} and uses this to break *MAC*. Contradiction!
- **Hint:** \mathcal{B} can *tinker* with the what it gets from \mathcal{A} and what it forwards from its oracle to \mathcal{A} .
- There can be interesting variations of unforgeability such as strong unforgeability from Discussion 6, Q2: Adversary can win even if they output a valid tag on a message that was previously queried.
- You can be asked to compare the security properties of the MAC security definition with a new primitive.
 - E.g. define a primitive x that is not a MAC.

Spring 2021 MT2 Q2

Consider a "CCA-style" extension to the definition of secure message authentication codes, where the adversary is provided with both a *MAC* and a *Verify* oracle. Our starting point will be the "standard" notion of MAC security, called "existential unforgeability under adaptive chosen-message attacks," and we will consider a variant of this definition that allows for Verify oracle queries.

(a) Provide a formal definition of CCA-secure MACs. That is, describe an experiment called CCA – Mac – Forge_{A,Π}(*n*), and provide a security requirement stating that no adversary can win your game except with negligible probability.

(a) Provide a formal definition of CCA-secure MACs. That is, describe an experiment called CCA – Mac – Forge_{A,Π}(*n*), and provide a security requirement stating that no adversary can win your game except with negligible probability.

- The challenger samples $k \leftarrow \text{Gen}(1^n)$.
- The adversary A is given input 1ⁿ and oracle access to Mac_k(·) and Verify_k(·, ·). The adversary eventually outputs a pair (m, t). Let Q denote the set of all queries that A asked to its Mac_k(·) oracle.
- Some output of the experiment is defined to be 1 if and only if (1) Verify_k(m, t) = 1 and (2) m ∉ Q.

 Π is a CCA-secure MAC if for all adversaries $\mathcal{A},$

$$\Pr[CCA - Mac - Forge_{\mathcal{A},\Pi}(n) = 1] = negl(n)$$

(b) Assume that Π is a standard secure *deterministic* MAC that has *canonical verification*, meaning that i) the Mac algorithm is deterministic and ii) the Verify algorithm, on input (m, t), recomputes $t' := Mac_k(m)$ and accepts if t' = t. Prove that Π also satisfies your definition from part (a).

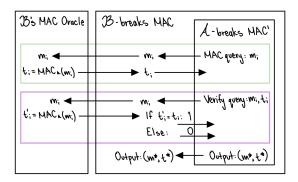
<u>11</u> / 49

When Π is deterministic and has canonical verification, each message has only a single valid tag. Thus, if the scheme is secure, then access to a Verify oracle does not help (and so Π is secure in the sense of the definition given in part (a)). To see this, note that for any query (m, t) to the Verify oracle there are 3 possibilities:

- m was previously queried to the Mac oracle, and response t was received. Here the adversary already knows that Verify_k(m, t) = 1.
- *m* was previously queried to the Mac oracle, and response t' ≠ t was received. Since Π is deterministic, the adversary already knows Verify_k(m, t) = 0.
- m was not previously queried to the Mac oracle. By security of Π, we can argue that Verify_k(m, t) = 0 with all but negligible probability because otherwise, m, t is a valid forgery. Let's prove it.

We want to show that if m was not previously queried to the Mac oracle, by security of Π , we can argue that $\operatorname{Verify}_k(m, t) = 0$ with all but negligible probability because otherwise, m, t is a valid forgery. Let MAC' be a CCA-secure MAC. Assume that $\operatorname{Verify}_k(m, t) = 1$. Then there exists an adversary \mathcal{A} that can query a message m to the verify oracle in the CCA-secure MAC scheme to obtain a valid MAC. Now construct an adversary \mathcal{B} that simulates the security game for \mathcal{A} to win the Π security game.

MAC: Practice Problem (Part (b) Solution Continued)



We successfully simulate the game for \mathcal{A} because its queries are accurately answered. So \mathcal{A} can produce a message that was not previously queried such that $\operatorname{Verify}_k(m, t) = 0$, then so can \mathcal{B} . Contradiction.

2 Collision-Resistant Hash Functions (CRHFs)

- 3 One-Way Functions (OWFs)
- 4 Public-Key Encryption (PKE)
- 5 Key Exchange

• Syntax:

$$H^{s}(x) = y$$

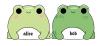
- A collision in H^s is a pair (x, x') such that $x \neq x'$ but $H^s(x) = H^s(x')$.
- *H* is guaranteed to have collisions. We require that |y| < |x| (*H* is **compressing**).
- If it's hard to find those collisions, then the hash function is **collision-resistant**.

- The hash function \mathcal{H} is a pair of algorithms: $\mathcal{H} = (\text{Gen}, H)$.
- Gen: outputs a random key/seed s:

$$s \leftarrow \mathsf{Gen}(1^n)$$

The key is allowed to be public.

 H^s: This is also sometimes referred to as the hash function. The output length – and sometimes the input length – are fixed. H^s is deterministic.



- **Summary:** The adversary is given *s* and a description of *H*, and they try to find a collision in *H^s* with non-negligible probability.
- Hash-coll_{A,H}(*n*):
 - The challenger samples a key $s \leftarrow \text{Gen}(1^n)$ and gives s to the adversary \mathcal{A} .
 - 2 \mathcal{A} produces two inputs (x, x') to H^s .
 - 3 \mathcal{A} wins (and the game outputs 1) if (x, x') are a collision:

$$x \neq x'$$
 and $H^{s}(x) = H^{s}(x')$

Otherwise, \mathcal{A} loses (the game outputs 0).

• Note that the adversary can compute H^s by themselves.

• \mathcal{H} is **collision-resistant** if for any PPT adversary \mathcal{A} , there is a negligible function negl such that:

$$\Pr[\text{Hash-coll}_{\mathcal{A},\mathcal{H}}(n) = 1] \leq \operatorname{negl}(n)$$

• The adversary in the CRHF security game is given s and a description of H, so they can compute $H^{s}(x)$ on any input x of their choosing.

- Summary: The problem shows you how to reprogram a hash function so that a given x* maps to a given y*, while maintaining collision-resistance.
- Source: Midterm 2, Fall 2019, Q 5.2.b

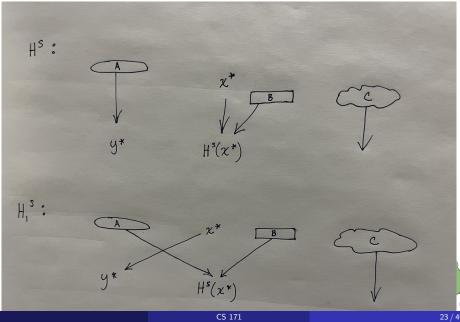
The problem:

- Let H = (Gen, H) be a CRHF. Let x* belong to the domain of H^s, and let y* belong to the range of H^s.
- Next, for any $s \leftarrow \text{Gen}(1^n)$:

$$\text{let } H_1^{\mathfrak{s}}(x) = \begin{cases} y^* & \text{if } x = x^* \\ H^{\mathfrak{s}}(x^*) & \text{if } x \neq x^* \text{ and } H^{\mathfrak{s}}(x) = y^* \\ H^{\mathfrak{s}}(x) & \text{otherwise} \end{cases}$$

• Prove that (Gen, H_1) is a CRHF.

CRHF: Practice Problem



Theorem

 (Gen, H_1) is a CRHF.

Proof:

Overview:

- Assume toward contradiction that (Gen, H₁) is not a CRHF. Then there exists an adversary A that wins the CRHF game for H₁ (by finding a collision in H₁) with non-negligible probability.
- We will use A to construct an adversary B that wins the CRHF game for H with non-negligible probability.
- This is a contradiction because (Gen, *H*) is a CRHF. So our initial assumption was false and (Gen, *H*₁) is also a CRHF.

Construction of \mathcal{B} :

- In the CRHF game for H, the challenger samples $s \leftarrow \text{Gen}(1^n)$ and gives s to the adversary \mathcal{B} .
- **2** \mathcal{B} will run \mathcal{A} on input *s* until \mathcal{A} produces two inputs (x, x').
- B makes a list of collision candidates:

$$C := \{(x, x'), (x, x^*), (x', x^*)\}$$

and checks whether each candidate $(x_1, x_2) \in C$ satisfies the conditions: $x_1 \neq x_2$ and $H^s(x_1) = H^s(x_2)$.

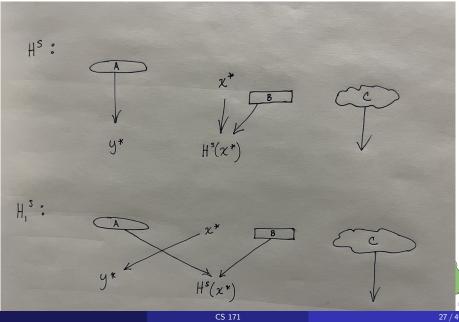
③ \mathcal{B} outputs the first candidate $(x_1, x_2) \in C$ that satisfies the conditions.

• Note that with non-negligible probability (x, x') will be a collision in H_1^s :

$$x \neq x'$$
 and $H_1^s(x) = H_1^s(x')$

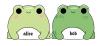
• We will prove that in this case, \mathcal{B} will succeed in finding a collision in H^s .

CRHF: Practice Problem Solution



Let's assume that (x, x') are a collision in H_1^s . Then consider the following trivial cases:

- Case 1: H^s(x^{*}) = y^{*}: In this case, H^s₁ = H^s; reprogramming the function doesn't do anything. If (x, x') are a collision in H^s₁, then (x, x') will be a collision in H^s. For the remaining cases, assume that H^s(x^{*}) ≠ y^{*}.
- Case 2: x = x* or x' = x*: This will not happen if (x, x') is a collision in H^s₁ because x* is the only input that H^s₁ maps to y*.



Now consider some more-interesting cases:

• Case 3: $(x, x') \in A$. Then

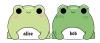
$$H^{\mathfrak{s}}(x) = y^* = H^{\mathfrak{s}}(x')$$

so (x, x') are a collision in H^s .

• Case 2: $(x, x') \in B \cup C$. Then

$$H^{s}(x) = H^{s}_{1}(x) = H^{s}_{1}(x') = H^{s}(x')$$

so (x, x') are a collision in H^s .



• Case 4: $x \in A, x' \in B$. Then

$$H^{s}(x')=H^{s}(x^{*})$$

so (x', x^*) are a collision in H^s .

• Case 5: $x \in B, x' \in A$. Then

$$H^{s}(x) = H^{s}(x^{*})$$

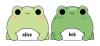
so (x, x^*) are a collision in H^s .

- Message Authentication Codes (MACs)
- 2 Collision-Resistant Hash Functions (CRHFs)
- 3 One-Way Functions (OWFs)
 - 4 Public-Key Encryption (PKE)
- 5 Key Exchange

• Syntax:

$$f(x) = y$$

- A function $f: \{0,1\}^* \to \{0,1\}^*$ is one-way if
- It's easy to compute, i.e., computing f(x) runs in "probabilistic polynomial time.", but
- It's hard to invert, i.e., there is no "probabilistic polynomial time" algorithm that can compute $f^{-1}(y)$.
- Note: $\{0,1\}^* \to \{0,1\}^*$ means the input and output can be arbitrarily long bit strings.



- How can we formally define "hard to invert"?
- OWF-Sec_{A,f}(n):
 - The challenger randomly samples an input x ← {0,1}ⁿ and gives f(x) to the adversary A along with 1ⁿ.
 - 2 \mathcal{A} produces a value $x' \in \{0,1\}^n$.
 - 3 \mathcal{A} wins (and the game outputs 1) if f(x') = f(x)
 - Otherwise, \mathcal{A} loses (the game outputs 0).
- The probability A wins the above game should be at most negl(n) for f to be secure.
- This can be expressed equivalently as:

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(1^n, f(x)) \in f^{-1}(f(x))] \le \mathsf{negl}(n).$$

- OWF's are "almost universal" in the sense that most cryptographic primitives imply the existence of OWFs.
- If a question asks you to construct a OWF from a standard-looking primitive, you probably do it.
- The only gotcha is if the given primitive is contrived, e.g. constructing a OWF *f* from a PRP *F* as follows:

$$f(x_0 \parallel x_1) = F(x_0, x_1)$$

• See discussion 8 for detail on why this example fails.

Example questions: construct a one-way function from one of the following primitives:

- A PRG $G: \{0,1\}^{n/2} \rightarrow \{0,1\}^n$
- a CRHF (Gen, H) where $H^s: \{0,1\}^n \to \{0,1\}^{n/2}$
- a one-to-one function (permutation) $F : \{0,1\}^n \to \{0,1\}^n$ with a hard-concentrate predicate $hc(\cdot)$.

Question: construct a one-way function from a CRHF (Gen, H) such that H^s: {0,1}ⁿ → {0,1}^{n/2}.

We'll prove the following theorem:

Theorem

 $f(s \parallel x) = s \parallel H^{s}(x)$ is a OWF.

Step 1: Stating our argument.

- Suppose for the sake of contradiction that *f* is not a OWF.
- This implies that there exists an adversary \mathcal{A} that can win the OWF-Sec_{\mathcal{A},f}(n) security game with nonnegl(n) probability.
- We will construct an adversary B from A that wins Hash-coll_{A,H}(n) with nonnegl(n) probability.

Step 2: Construction of \mathcal{B} :

- **(**) \mathcal{B} is given the truly random seed *s* from the CRHF challenger.
- **2** \mathcal{B} samples a random $x \leftarrow \{0,1\}^n$ and runs \mathcal{A} on $H^s(x)$ to obtain x'.
- If x = x', abort.
- Otherwise, output (x, x') as a collision.

Proving $f(s \parallel x) = s \parallel H^{s}(x)$ is a OWF

Step 3: Analysing \mathcal{B} :

- We need to lower bound the probability that we don't abort (i.e., the probability we win).
- Pirst, observe that the probability our random x collides with x' by chance (H^s(x) = H^s(x')) is upper bounded by the birthday bound, 2^{-n/2}. Note: we have no control over the particular x' that A got from inverting f(x), but the x that B sampled itself is uniformly random, meaning that chance x = x' is still random even if A doesn't choose x' randomly.
- Or Conditioned on the above *not* happening, the probability that *x* ≠ *x*['] is at least 1/2. This follows from the fact that *H* takes *n* bits to *n*/2 bits, implying $\Pr[x = x'] = \frac{1}{2^{n/2}} < \frac{1}{2}$.
- Outting these two point together:

$$\Pr[x \neq x' | H^s(x) = H^s(x')] \geq rac{1}{2} - rac{1}{2^{n/2}}$$
.

(本部) (本語) (本語) (二语

Proving $f(s \parallel x) = s \parallel H^{s}(x)$ is a OWF

Step 4: Wrapping up:

- We proved that we don't abort probability $\frac{1}{2} \frac{1}{2^{n/2}}$.
- In the case that B doesn't abort, it follows from the construction that (x, x') are a valid collision.

In Thus,

$$\begin{aligned} &\Pr[\mathsf{Hash-coll}_{\mathcal{B},H}(n) = 1] \\ &= \Pr[\mathsf{OWF-Sec}_{\mathcal{A},f}(n) = 1] \cdot \Pr[x \neq x' | H^s(x) = H^s(x')] \\ &= \mathsf{nonnegl}(n) \cdot \left(\frac{1}{2} - \frac{1}{2^{-n/2}}\right) \\ &= \mathsf{nonnegl}'(n) \end{aligned}$$

■ In summary, given an adversary \mathcal{A} that wins OWF-Sec_{\mathcal{A},f}(*n*) with non-negligible probability, \mathcal{B} wins Hash-coll_{\mathcal{B},H}(*n*) with non-negligible probability, which is a contradiction \Box .

- 1 Message Authentication Codes (MACs)
- 2 Collision-Resistant Hash Functions (CRHFs)
- 3 One-Way Functions (OWFs)
- Public-Key Encryption (PKE)
- 5 Key Exchange

(The syntax and most properties are very similar to private/symmetric key encryption that we've seen earlier.)

A PKE scheme consists of three PPT algorithms (Gen, Enc, Dec) where

- $Gen(1^n) \rightarrow (\mathbf{sk}, \mathbf{pk})$
- $Enc(\mathbf{pk}, m) \rightarrow c$
- $\textit{Dec}(\mathbf{sk}, c) \rightarrow \textit{m}/\perp$

and these satisfy two properties

- **Correctness**: Dec(sk, Enc(pk, m)) = m.
- Security: EAV = CPA security / CCA security

PKE: CPA Security

- Challenger samples $(sk, pk) \leftarrow Gen(1^n)$ and gives pk to \mathcal{A} .
- \mathcal{A} outputs two messages m_0, m_1 .
- Challenger samples a bit $b \in \{0, 1\}$ and outputs $Enc(pk, m_b)$.
- \mathcal{A} outputs b' as a guess for b.

CPA-secure if for all PPT ${\mathcal A}$

$$Pr[b'=b] \leq \frac{1}{2} + negl(n)$$

Intuition

Looking at the ciphertext should not reveal which message was encrypted.

- *pk* is given to the adversary, so no encryption oracle is needed A can locally encrypt whatever it wants.
- sk is unknown, so decryption is not possible CCA game for PKE gives access to a decryption oracle to A.
- Most proof techniques are similar to that of private key encryption schemes:
 - Show that a certain scheme is not CPA/CCA secure construct an adversary for the game that is able to figure out which message was encrypted.
 - Show that a certain scheme is secure often relies on the security of some other primitive → Proof by contradiction.

aliee bob

PKE scheme based on DDH.

- Gen(1ⁿ): Generate cyclic group G of order q and a generator g. Sample x ∈ Z_q and h = g^x.
 Output pk = (G, q, g, h), sk = x
- $Enc(pk, m) \rightarrow (c_1, c_2)$: Sample $r \in \mathbb{Z}_q$. Output $(c_1, c_2) = (g^r, m \cdot h^r)$

•
$$Dec(sk, (c_1, c_2)) \rightarrow m$$
: **Output** $m = \frac{c_2}{c_1^{\chi}}$

Correctness

$$Dec(sk, Enc(pk, m)) = Dec(sk, (g^r, mh^r)) = \frac{mh^r}{(g^r)^x} = \frac{mh^r}{h^r} = m$$

- 1 Message Authentication Codes (MACs)
- 2 Collision-Resistant Hash Functions (CRHFs)
- 3 One-Way Functions (OWFs)
- 4 Public-Key Encryption (PKE)

Consists of three randomized algorithms (P_1, P_2, P_3) :

- Alice computes $(m_1, st) \leftarrow P_1(1^n)$ and sends m_1 to Bob.
- Bob computes (m₂, k) ← P₂(m₁). Then he sends m₂ to Alice and outputs k.
- Solution Alice computes $k \leftarrow P_3(st, m_2)$ and outputs k.
 - **Correctness**: Both parties get the same key k.
 - Security: No eavesdropper can distinguish between (m_1, m_2, k) and (m_1, m_2, r) where r is a random element.

Question

Given a PKE scheme (*Gen*, *Enc*, *Dec*), construct a secure key exchange scheme (P_1, P_2, P_3) .

Question

Given a PKE scheme (*Gen*, *Enc*, *Dec*), construct a secure key exchange scheme (P_1, P_2, P_3) .

Construction

 $\begin{array}{l} P_1(1^n): \mbox{ Run } Gen(1^n) \rightarrow (sk,pk). \mbox{ Return } (m_1,st) = (pk,sk). \\ P_2(m_1): \mbox{ Sample random } r \mbox{ and run } Enc(m_1,r) \rightarrow c. \\ \mbox{ Return } (m_2,k) = (c,r). \\ P_3(m_2,st): \mbox{ Run } Dec(st,m_2) \rightarrow r' \mbox{ and return } r. \end{array}$

Solution: Key exchange from CPA-Secure PKE

By contradiction: Suppose the Key exchange scheme is not secure. Then we have A that can distinguish (m_1, m_2, k) from (m_1, m_2, r) where r is random.

We'll construct \mathcal{B} for the CPA game that distinguishes between encryptions of m_0 or m_1 .

