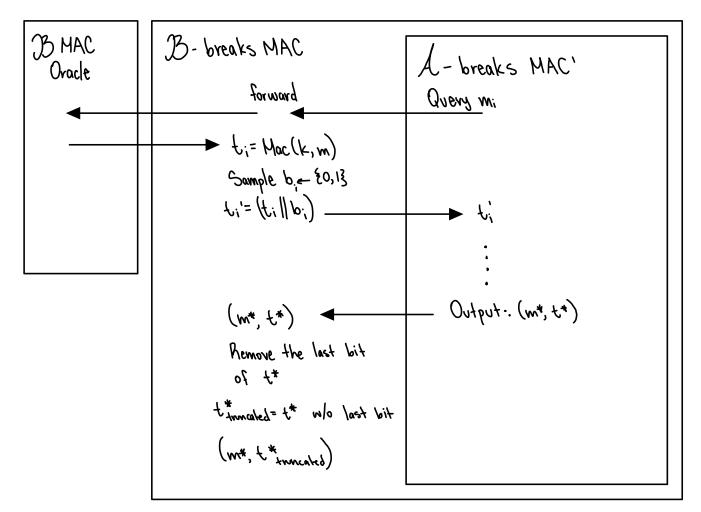
Difference Between Regular and Strong Security for MACs

Construct a MAC MAC' := (Gen', Mac', Verify') that is secure but not strongly secure. In your construction, you may start with a secure MAC, MAC := (Gen, Mac, Verify).

MAC':

- · Cen'(1"): hun Gen(1")
- Mac'(K,m): 1. Compute t= Mac(k,m)
 2. Sample b ← {0,1}
 3. Output t':= t||b|
- · Verify (h, m, t) : Let tymocrated = t without the final bit. Hun Verify (h, m, tymocrated).

Let's prove that MAC' is secure: We will assume (toward contradiction) there is an adversary $\mathcal A$ that breaks MAC'. We will construct $\mathcal B$ that breaks MAC.



So... if A outputs a winning (m^*, t^*) , B can use it to break MAC (100% of the time!) since Verify'(k, m^*, t^*) would output 1 (implying Verify (k, m^*, t^*) and outputs 1.)

A wins w/ non-negl. probability $\longrightarrow B$ wins MAC game w/ non-negl. probability. So our assumption was false B MAC' is secure!

CPA-Secure Encryption

Let (Gen, Enc, Dec) be a CPA-secure encryption scheme. Below, we will construct another encryption scheme and prove that it is also CPA-secure.

In the encryption scheme below, let the message m belong to $\{0,1\}^n$.

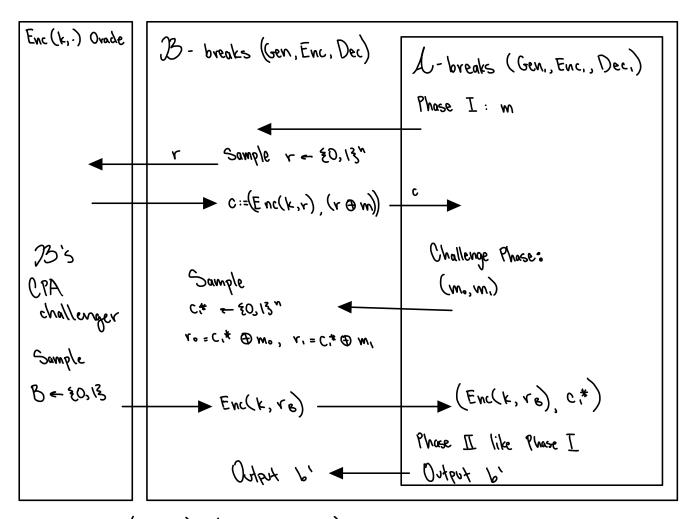
- $\operatorname{\mathsf{Gen}}_1(1^n)$: Sample the key as follows: $k \leftarrow \operatorname{\mathsf{Gen}}(1^n)$.
- $\operatorname{Enc}_1(k,m)$: Sample $r \leftarrow \{0,1\}^n$ uniformly at random. Then compute $c_0 := \operatorname{Enc}(k,r)$ and $c_1 := r \oplus m$. Output the ciphertext $c = (c_0, c_1)$.
- $Dec_1(k,(c_0,c_1))$: Compute $V':=Dec(k,C_0)$; compute $m':=r'\oplus c_1$. Output m'.

Prove that (Gen₁, Enc₁, Dec₁) satisfies CPA security.

(Gen, Enc, Dec,) is not CPA secure. Assume

We will assume (toward contradiction) there is an adversary A that breaks (wins the CPA game) for (Gen,, Enc,, Dec,) w.p. \frac{1}{2} + non-negl.

We will construct B that breaks (Gen, Enc, Dec).



- · For either B (0 or 1), (Enc(k, rb), c,*) is a valid encryption of mb under Enc,(k,.)
- · C'*= LB & WB
- · re is uniformly random is independent of (mo, m, B)

1 2 B have the same success probability!