
How to Proof
CS 171

February 29, 2024

CS 171 1 / 18

Table of Contents

1 5 Tips on Security Proofs

2 Proof Walkthrough #1

3 Proof Walkthrough #2

CS 171 2 / 18

Table of Contents

1 5 Tips on Security Proofs

2 Proof Walkthrough #1

3 Proof Walkthrough #2

CS 171 3 / 18

So, you want to learn how to write a security proof...

First of all...

This is a challenging thing to do... and the hardest skill to pick up from
this class. So, it’s okay if it takes some time to get the hang of!

There is no plug-and-chug solution to writing a correct security proof. And
often, there are many correct proof strategies.

The point of this workshop is to share some tips, walk through one
security proof that uses these tips, and answer your questions.

CS 171 4 / 18

Tip #1: Identify Your Secure Building Blocks

Ask yourself...

Does this scheme x that I am trying to prove secure contain an underlying
building block y that I know to be secure?

Examples: This scheme uses an underlying...

pseudorandom function Fk(·)!

message authentication code MACk(·)!

CPA-secure encryption scheme (Gen,Enc ,Dec)!

CS 171 5 / 18

Tip #2: Create an “Outside” Adversary B

So you found an underlying secure building block y ... We know it’s
secure, so we should take advantage of this fact.

Assume that there is an adversary A that can break x . Your goal should
be to construct an adversary B that can run A internally and use it to
break y .

But this is a contradiction, because we assumed y was secure. So x is
secure.

CS 171 6 / 18

Tip #3: B Can Simulate A’s Security Game

So we know we need to make an adversary B to break our already secure
scheme y using A, which breaks x . How? How can we actually use A to
help B do what it needs to do?

B can simulate the security game for A. This means it can effectively
serve as an intermediary between A and its own oracle:

B can pretend to be A’s oracle.

B can tinker with A’s queries before they reach B’s oracle.

B can tinker with B’s oracle responses to those queries before they
reach A.

B can try to learn from A’s final output.

CS 171 7 / 18

Tip #4: Get Specific with B’s Tinkering

B will have quite a bit of power now that it can (1) simulate what A sees
and (2) see what A outputs.

So once you have the intuition about why the scheme seems secure, use
that knowledge specific changes to the queries that B will make as the
“middleman” between A and its own oracle.

This goes hand in hand with making specific changes to the output of
A’s security game to get the output that B will need to win its own
security game.

CS 171 8 / 18

Tip #5: Quantify the Adversary’s Advantage

Say you have successfully set up your security game. Now you need to
show your adversary wins the game with non-negligible probability.

“Winning” depends on the problem, but it usually comes down to the
adversary being able to detect a difference in distributions between a
“uniformly random” scenario and the scheme itself. Examples:

Your adversary will be able to output something that will allow it to
win 100% of the time (probability 1).

The random scenario happens with 1
2 probability, but your adversary

wins with probability p > 1
2 + non-negl(n).

CS 171 9 / 18

Table of Contents

1 5 Tips on Security Proofs

2 Proof Walkthrough #1

3 Proof Walkthrough #2

CS 171 10 / 18

Discussion 6, Q2: Difference Between Regular & Strong
Security for MACs

Construct a message authentication code MAC′ := (Gen′,Mac′,Verify′)
that is secure but not strongly secure. In your construction, you may start
with a secure MAC, MAC := (Gen,Mac,Verify):

Gen′(1n): Run Gen(1n).

Mac′(k ,m):
1 Compute t = Mac(k ,m).
2 Sample b ← {0, 1}.
3 Output t ′ := t||b.

Verify′(k ,m, t): Let ttruncated be t with the final bit removed. Run
Verify(k ,m, ttruncated), and output the result.

We will prove that MAC′ is a secure MAC.

CS 171 11 / 18

Discussion 6, Q2: Use the Tips to Get Started!

Tip #1: What is your secure building block?

Tip #2: What will your “outside” adversary be?

CS 171 12 / 18

Discussion 6, Q2: Use the Tips to Get Started!

Tip #1: What is your secure building block? MAC.

Tip #2: What will your “outside” adversary be? An adversary A
that can break the MAC.

CS 171 13 / 18

Discussion 6, Q2

Let’s draw it.

CS 171 14 / 18

Table of Contents

1 5 Tips on Security Proofs

2 Proof Walkthrough #1

3 Proof Walkthrough #2

CS 171 15 / 18

Midterm 1, Q4: CPA-Secure Encryption

Let (Gen,Enc,Dec) be a CPA-secure encryption scheme. Below, we will
construct another encryption scheme and prove that it is also CPA-secure.
In the encryption scheme below, let the message m belong to {0, 1}n.

Gen1(1n): Sample the key as follows: k ← Gen(1n).

Enc1(k ,m): Sample r ← {0, 1}n uniformly at random. Then compute
c0 := Enc(k , r) and c1 := r ⊕m. Output the ciphertext c = (c0, c1).

Dec1(k , (c0, c1)): Dec1(k, (c0, c1)): Compute r ′ :=
Dec(k, c0) and then compute m′ := r ′ ⊕ c1. Output m′.

Prove that (Gen1,Enc1,Dec1) satisfies CPA security.

CS 171 16 / 18

Midterm 1, Q4: An “Informal” Solution

This is the style of solution that works to get partial credit, but does not
constitute a correct proof.

Sometimes, intuition checks out but there are nits that make the scheme
insecure. You can also have bugs in your proof, but it is a significantly
more surefire than an intuitive explanation. But let’s start with one...

The encryption scheme Enc is secure. Also, r is like a uniformly sampled
one time pad, so it also doesn’t ruin the security. So Enc1 is secure.

This is on the right track... but it’s not a proof and is not rigorous.

CS 171 17 / 18

Midterm 1, Q4

Let’s draw it.

CS 171 18 / 18

	5 Tips on Security Proofs
	Proof Walkthrough #1
	Proof Walkthrough #2

